
Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

A C++ DEVELOPMENT PLATFORM FOR REAL TIME AUDIO PROCESSING AND
SYNTHESIS APPLICATIONS

Enrique Robledo Arnuncio, Rubén Hinojosa, Maarten de Boer

Music Technology Group
Universidad Pompeu Fabra�

erobledo,rhinojos,mdeboer � @iua.upf.es

ABSTRACT

The computational power provided by current general pur-
pose computers allows to undertake the implementation of low
cost software-only real time audio processors. Unfortunately, com-
putational power is not the only requirement for high demand ap-
plications. There are still important difficulties to overcome in
other areas such as robustness and low latency. These difficul-
ties have lead us to the development of Rappid, a development
framework for C++ real-time high-demand audio processing ap-
plications.

This paper describes the Rappid development framework. First
of all we discuss the objectives we pursue with its development,
and we give an overview to some other existent solutions before
starting the actual description of the framework. We finally de-
scribe a first sound processing application which has been suc-
cessfully developed with it.

1. OBJECTIVES

In the computer music research field it is not possible to evaluate a
given sound synthesis or processing algorithm without listening to
its output. If the algorithm has real time control parameters, proper
experimentation can only be done with a real time implementation
and a human interpreter involved. This is necessary from the ear-
liest stages of research.

This is the reason why computer music researchers very often
become computer music application developers. It is thus impor-
tant for them to have a good application development framework,
so that the loop time between the algorithm idea and its evaluation
is reduced as much as possible.

Converting a research application prototype into an applica-
tion wich can be used as a musical instrument in other scenarios
should not be hard work if both the framework and the developer
take enough care of requirements such as efficiency, latency and
robustness. This is what our framework aims to achieve. We state
this in more detail in the following list of objectives.

1.1. Easy development of real time sound processing applica-
tions

When writing a sound synthesis or processing application, a big
part of the time is usually spent on dealing with technical de-
tails such as file and sound input/output, separating the real-time
and the non real-time code, setting up multi-threading, configuring
thread priorities, etc. We try to reduce this burden by providing a
high level platform independent interface for such tasks.

The other, more important task of the sound application de-
veloper is the implementation of the algorithm. Rappid is not a
library of sound processing algorithms, but is meant to be used in
conjunction with CLAM [1], wich is one of such libraries.

In other words, the framework we present can be seen as an
extension to the CLAM library for the development of real time
sound processing applications.

1.2. Live musical performances

The main motivation for the development of Rappid is the need to
develop a software audio processor for live musical performances.
The general idea is feeding the sound of several real instruments to
the processor, and achieving extra synthetic instruments by trans-
formation and combination of the real ones in real time, all of this
with high quality audio inputs and outputs and with no sound arti-
facts.

1.3. Using CLAM

One of our main goals of Rappid is to beta test CLAM, a library of
C++ classes for Audio and Music processing which is also being
developed at the Music Technology Group [1].

As it has already been mentioned, Rappid is meant to be used
with CLAM, but in addition to this, Rappid itself makes extensive
use of this library, for mid-level input/output operations, configu-
ration storage, etc.

1.4. General availability

Another important goal for us is to include the result of our work
as a deliverable of the AGNULA project [2], which aims to pro-
vide reference distributions for the GNU/Linux operating system
completely based on Free Software and completely devoted to pro-
fessional and consumer audio and multimedia applications.

This objective made it impossible to base our work on closed-
source solutions, and unfortunately most of the currently available
commercial frameworks, such as the most popular audio plug-in
systems, do not satisfy this requirement.

2. PC-BASED AUDIO PROCESSING

Nowadays a wide range of different PC-Based sound processing
solutions exists. We can differentiate three main categories, de-
pending on the target users:

DAFX-221

Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

Hobbyist tools: These tools usually satisfy the low-cost require-
ment, but are usually not flexible or powerful enough. Ex-
ample of these: some music creation software with basic
sound processing capabilities bundled in it.

Research tools: Sometimes cheap, coming from the academia or
free software world, sometimes expensive, coming from
companies. The most often lack real time capabilities, or
features to ease the creation of simple user interfaces. Ex-
amples of these are Matlab, Octave, Ptolemy, etc.

Professional tools: They can be very powerful, especially if they
involve the usage of specialized hardware, such as the Pro-
tools systems by Digidesign, but they are, until now, very
expensive commercial products.

These kind of tools are most often based on the VST frame-
work, the industry de-facto standard for sound applications
in the Windows and Macintosh environments.

Our functional requirements would lead to choose some frame-
work in the third category, but unfortunately, as we have already
seen, the other requirements prevent that.

Recently good sound support is becoming available in the Free
Software world, with the ALSA [3] system getting close to its first
release, and more and more sound cards supporting it. This, added
to the good reliability and latency capabilities that GNU/Linux
systems provide [4], makes these platforms very appealing for real
time sound processing applications.

Many such applications have started to emerge in the Free
Software world, as can be seen in Dave Phillips popular sound
software index [5]. In contrast to the commercial world, many
of these are small and very specific standalone sound processing
tools, such as Tapiir [6].

Until now, though, there is not a clear standard framework
for sound applications development on GNU/Linux environments.
Some very promising solutions, such as Jack and LADSPA [7], are
being developed, and we will probably see improvements in this
area in the next months. They will probably allow, for example,
to use many of the small applications mentioned in the previous
paragraph in conjunction with each other.

But all of these frameworks provide only low level C APIs for
sound input and output; a higher level of abstraction is convenient
to ease the development of complex applications with involve in-
teractive graphical interfaces.

Also, in the sound processing algorithms domain, some very
promising libraries are starting to be available. Examples of these
include CLAM, on which Rappid is based, or the SndObj library
[8], which provides a more compact set of classes for time domain
processing.

3. SYSTEM OVERVIEW

Rappid is designed to fit a live performance use case, for which the
application requires:

� A set of audio inputs, corresponding to some external audio
sources in the performance, such as natural instruments.

� A set of audio outputs, corresponding to synthetic instru-
ments generated by the application.

� A set of control parameters, which define which aspects of
the processing algorithm can be modified from the user in-
terface.

These elements are implemented as a set of C++ classes and
services, which are organized in an architecture as described in
figure 1. Actually, there is a Rappid class which contains all the
processing modules. The graphical user interface can use the pub-
lic methods of this class to control it.

Audio
Inputs

Audio
OutputsProcessing / UI multithreading

Utilities
Graphical rendering

User interface API

Audio processing API

Interface

RAPPID

ProcessorAudio
(C++ class)

User

Figure 1: Rappid architecture.

The figure also shows the components that the application de-
veloper needs to implement: the audio processor and the user in-
terface. The system provides two different programming interfaces
for both parts of the application. The current version of the frame-
work does not yet provide a final version of these APIs. It is still a
proof of concept to check that the general approach is valid.

3.1. API for the audio processors

Developers of new real time audio processing algorithms in C++
can take advantage of several services from Rappid:

3.1.1. Frame based real time audio input and output

Following the CLAM way of doing things, the programmer has to
provide an execution C++ method in his processing class, which
will be called each time a new audio frame is available at the input.

Each input and output can be connected to a real-time audio
device or to a file on disk once the application is run, depending
on user choice. The audio processor does not have to worry about
this.

3.1.2. Multi-threading and process priority management

The developer does not need to care about this issues. Rappid
creates an audio processing thread, sets it to an adequate operat-
ing system scheduling policy, and handles synchronization in the
communication with the user interface thread. Also, a watchdog
mechanism avoids system locks caused by errors when the pro-
cessing thread priority is high.

3.1.3. Basic graphical capabilities for debugging

This capability is still in an experimental stage. A simple graphical
application will be available for developers of processing modules,
which should allow the visualization of input and output signals,
as well as internal ones.

DAFX-222

Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

3.1.4. Spectral analysis an synthesis

This is also still in an experimental stage. For spectral domain
processing, Rappid will provide out of the box STFT data blocks
calculated from an audio input. Thus, a Rappid based processor
will be able to directly take spectral frames as inputs, and write
spectral frames as outputs.

3.2. API for the user interface application

Of course, many applications won’t have enough with the small
graphical display and control capabilities Rappid aims to provide.
These applications can implement their own graphical interface,
and use a whole Rappid system as a C++ library class, through a
simple control and configuration interface.

One of the main advantages of Rappid for these applications is
isolating the complexity of multi-threading. The application does
not need to know that the processing code is running in a differ-
ent thread. It just need to use the control interface to start/stop the
system, change processing parameters in run time, or ask the visu-
alization interface to provide it with the data to visualize. Rappid
takes care of the initialization of multi-threading, and of the syn-
chronization in these data transactions.

On the other hand, the application developer has full control
on the graphical user interface implementation. This is the main
difference with existent plug-in frameworks, which provide the de-
veloper with a very limited graphics API.

4. SYSTEM ARCHITECTURE

Figure 2 shows the dataflow diagram of Rappid. Each block in
the figure corresponds to a CLAM processing object. It can be
seen there that the whole audio processor is composed of a set of
processing modules, each of which can take all the system inputs
as its inputs, and generate an output.

B
C

D
Proces .

Module A

 Controller

In 1

In 2

In 3

Out A
 B

 D
 C

Figure 2: Dataflow diagram of a possible Rappid application.

The figure also shows how the user interface part has no rela-
tion with the data flow, but for the (asynchronous) control mecha-
nism.

4.1. Current implementation

The current Rappid implementation still forces a very high inter-
dependency between the framework services and the processing
modules. Adding or modifying processing modules requires ex-
tending the Rappid class and compiling the whole framework.

The class diagram of an example application is shown in figure
3. This figure represents the same example as in figure 2.

Rappid
RappidInput

RappidOutput

RappidConfig

+ Control

+ Rappid(cfg : RappidConfig)

+ StartRunning()

+ StopRunning()

+ Do()

+ GetConfiguration()

− AttachChildren()

: bool

: bool

: bool

: RappidConfig

− mProcessingThread: pthread_t

: Controller
+ Do()

+ Do()

: bool

: bool

1

4

3

ProcClassA ProcClassB ProcClassC

+ Do() + Do() + Do()+ Do()

ProcClassD

1 1 1 1

Figure 3: Rappid class diagram.

4.2. Current work

We are now working on a more flexible implementation, allowing
dynamic linking of processing modules into the application, and
dynamic configuration of all the Rappid parameters, so that it is
not necessary to recompile it when the processing module or the
graphical interface change.

The structure of the application will be like the one shown in
figure 4. This will allow greater flexibility, but will probably cause
a small performance penalty.

5. IMPLEMENTATION DETAILS

5.1. Development environment

Rappid will probably be a multi-platform framework in future, but
the current version is being developed with the GNU development
tool-set, and uses several POSIX tools and Linux kernel services.

5.1.1. The CLAM library

CLAM is a very rich collection of C++ classes. It provides audio
processing tools, data structures, XML support, input and output
abstraction, etc. Rappid processors will typically be implemented
using CLAM Processing objects as building blocks.

C++ is the language of choice of CLAM because of its bal-
anced combination of high level language support for object ori-
ented and generative programming, and the possibility of obtain-
ing very efficient object code.

No public versions of CLAM have been yet released, but a first
beta release is available [1].

5.1.2. Multi-threading and real time operation

Multi-threading is achieved using POSIX threads. On Linux sys-
tems, audio processing can be configured to run as a real time ap-

DAFX-223

Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

ProcClassA ProcClassB ProcClassC ProcClassD

+ Do() + Do() + Do() + Do()

Rappid
RappidInput

RappidOutput

RappidConfig

+ Control

+ Rappid(cfg : RappidConfig)

+ StartRunning()

+ StopRunning()

+ Do()

+ GetConfiguration()

: bool

: bool

: bool

: RappidConfig

− mProcessingThread: pthread_t

: Controller
+ Do()

+ Do()

: bool

: bool

*

*

*

RappidModule
*

Figure 4: Rappid class diagram using dynamic linking

plication. A watchdog mechanism is used in such cases, to avoid
system deadlocks due to a malfunctioning of the processing thread.

This approach has show to give really acceptable results. Of
course it is not possible to guarantee hard real time constrains in a
multitasking environment as Linux.

6. DEVELOPING APPLICATIONS WITH RAPPID

The development of an interactive sound processing or synthesis
application based on Rappid consists of two main tasks: develop-
ing the processing modules and developing the user interface.

6.1. Development of processing modules

Processing modules can be seen as application specific plugins.
In the current version of Rappid they are not actually plugins, as
the whole application needs to be recompiled to add or modify
modules, but things will change in future versions.

Most of the issues discussed in this section are common to the
development of any kind of CLAM Processing Class.

6.1.1. Processing class

Rappid processing modules need to be derived from the Pro-
cessing or ProcessingComposite class in the CLAM li-
brary. There are a few methods which need to be implemented in
classes derived from those ones. The most important ones are:

Do(): This is the execution callback method. It will be called
whenever new data frames are available at the module in-
puts, and it should write the corresponding output data frames
during its execution.

ConcreteConfigure(...): This method will be called when any con-
figuration parameter changes, so that the internal state of
the module can be updated.

ConcreteStart(...): This method will be called whenever the sys-
tem is restarted, and it should initialize the internal state of
the module accordingly.

6.1.2. Configuration class

A configuration class, derived from the ProcessingConfig
CLAM class, should also be defined, to be used as argument type
for the ConcreteConfigure method.

Attributes in this class will be the initial values for processing
parameters.

6.1.3. Modifications to Rappid class

In the current version of the framework, it is necessary to perform
some modifications in the Rappid class, so that it becomes aware
of the new processing modules added to it.

6.2. Development of User Interfaces

A graphical application can instantiate a Rappid object, configure
it and start or stop it, using the public methods which appear in
figure 3.

The next steps are very simple, as Rappid really does the hard
work. Its Control attribute offers methods for changing the pa-
rameters values in real time so, the developer only needs to create
a GUI and to link visual controls to these methods.

7. EXAMPLE APPLICATIONS

A prototype of a Rappid based audio processor was used in a com-
position by Gabriel Brncic which was performed on the 15 of June
in the Multiphonies 2002 cycle of concerts at the GRM in Paris[9].
This particular application was the main motivation for the devel-
opment of Rappid in the first place.

7.1. Processing module

The processing module in this application is able to perform real
time morphing between two instruments, a harp and a viola played
during the performance.

The morphing mechanism is a time domain envelope cross-
modulation designed by Gabriel Brncic for his composition, to
achieve a mixture of the dynamics of the input signals.

We have chosen a simple linear interpolation of the amplitude
average points as the envelope extraction algorithm. This mecha-
nism allows implementing soft changes in the envelope gain in a
very efficient way.

Two processing modules are instantiated in the system, so that
each of the input signals modulates the other one, and both modu-
lated results can be sent to separate output channels.

7.2. Graphical user interface

We used KDevelop [10], an awarded C/C++ Integrated Develop-
ment Environment, for the development of the graphical interface.
Based on Qt [11], KDevelop has an embedded version of Qt De-
signer, a very useful visual GUI design tool. Figure 5 shows the
resulting interface, controlling the Rappid processor.

DAFX-224

Proc. of the 5th Int. Conference on Digital Audio Effects (DAFx-02), Hamburg, Germany, September 26-28, 2002

Figure 5: Graphical controller using Rappid.

7.3. The concert

We used a desktop PC with an Intel Pentium III running at 800
MHz. The sound card was a RME DIGI96/8 sound card with an
ADAT interface working with a sample rate of 48 Khz. It had
Debian GNU/Linux (Woody) installed on it, and a recent version
of the Linux Kernel (2.4.17), with low latency patches applied to
it. We were able to keep the system running for hours with no
dropouts.

8. CONCLUSIONS

We have described a first version of a development framework for
sound processing applications, and how we have successfully used
it to implement an interactive sound processor wich satisfied live
performance requirements.

We have thus shown that a low-cost software-only approach
for high demand sound processing applications is possible. But we
have come across some problems wich still make the development
of such applications quite time consuming.

One problem of using this framework for real time applica-
tions is the difficulty to predict the worst case execution time of
interactive processing algorithms. The lack of time and latency
profiling tools makes it hard to find the cause of some sporadic
CPU-exhaustion dropouts for non-trivial processing algorithms.

Another drawback of using Rappid (or any other software so-
lution) in high demand applications is the dependency on the hard-
ware. Obtaining a low latency robust software processor is condi-
tioned to the availability of a hardware platform which does not
prevent the execution of the processing software for “long” inter-
vals, and the availability of good drivers for this hardware. Also,
these requirements do not only apply to sound hardware. Any
bad device in the processing computer can degrade latency per-
formance.

In order to overcome this difficulty, we had to use modifica-
tions to the Linux Kernel for better worst case latency1, and we had
to choose a mature hardware platform (about two years-old com-
ponents) for which mature Linux drivers exist. We hope that, as
more people start to use real-time applications, a wider knowledge
base of adequate hardware for real-time applications will available
in future.

1We used Andrew Morton’s low latency patches, available at
http://www.zip.com.au/ akpm/linux/schedlat.html

9. FURTHER DEVELOPMENTS

Rappid is still work in progress, and although its core is already
being used for real time applications, many aspects have to be pol-
ished and improved.

We plan to add some important new functionality, such as
mechanisms to allow latency analysis, and support for dynamic
linking of processing modules from the application.

Finally, the Linux audio development scene is really lively
these days. There are several promising frameworks and architec-
tures which have to be closely studied and followed. The Rappid
project will probably benefit from them, or maybe contribute to
them.

10. ACKNOWLEDGMENTS

This work would not have been possible without the contribution
of many people. We would specially like to thank Gabriel Brncic
for boosting this work, and for his ideas for the sound processing
algorithms. We would also like to thank Xavier Amatriain and all
the CLAM development team for their great work, and for their
support during the development of the framework.

We acknowledge the support of the European Commission,
which funds this project through the contract IST-2001-34879; key
action IV.3.3 (the AGNULA project). Also, we would like to thank
the Spanish Fulbright Commission, which has recently started to
fund one of the authors.

11. REFERENCES

[1] CLAM: C++ Library for Audio and Music processing,
“http://iua.upf.es/mtg/clam,” .

[2] A GNU/Linux Audio distribution. IST-2001-34879; key ac-
tion IV.3.3 AGNULA, “http://www.agnula.org/,” .

[3] ALSA. Advanced Linux Sound Architecture,
“http://www.alsa-project.org,” .

[4] Karl MacMillan, Michael Droettboom, and Ichiro Fujinaga,
“Audio latency measurements of desktop operating systems,”
Proceedings of the International Computer Music Confer-
ence, 2001.

[5] Dave Phillips, “Sound & midi software for linux,”
http://www.bright.net/˜dlphilp/linuxsound.

[6] Maarten de Boer, “Tapiir, a software multitap delay,” Confer-
ence on Digital Audio Effects, Limerick, Ireland, December
2001.

[7] Paul Davis et al., “Jack. low-latency audio server,”
http://jackit.sourceforge.net/.

[8] Victor Lazzarini, “Sound processing with the sndobj library:
an overview,” Conference on Digital Audio Effects, Limerick,
Ireland, December 2001.

[9] GRM: Les concerts Multiphonies 2002. Live electronics,
“http://www.ina.fr/grm/agenda/multiphonies.fr.html,” .

[10] “Kdevelop: a c/c++ integrated development environment,”
http://www.kdevelop.org.

[11] Trolltech, “Qt the cross-platform c++ gui toolkit and related
tools,” http://www.trolltech.com/products.

DAFX-225

