Download MOSPALOSEP: A Platform for the Binaural Localization and Separation of Spatial Sounds using Models of Interaural Cues and Mixture Models
In this paper, we present the MOSPALOSEP platform for the localization and separation of binaural signals. Our methods use short-time spectra of the recorded binaural signals. Based on a parametric model of the binaural mix, we exploit the joint evaluation of interaural cues to derive the location of each time-frequency bin. Then we describe different approaches to establish localization: some based on an energy-weighted histogram in azimuth space, and others based on an unsupervised number of sources identification of Gaussian mixture model combined with the Minimum Description Length. In this way, we use the revealed Gaussian Mixture Model structure to identify the particular region dominated by each source in a multi-source mix. A bank of spatial masks allows the extraction of each source according to the posterior probability or to the Maximum Likelihood binary masks. An important condition is the Windowed-Disjoint Orthogonality of the sources in the time-frequency domain. We assess the source separation algorithms specifically on instruments mix, where this fundamental condition is not satisfied.
Download Exploring Phase Information in Sound Source Separation Applications
Separation of instrument sounds from polyphonic music recordings is a desirable signal processing function with a wide variety of applications in music production, video games and information retrieval. In general, sound source separation algorithms attempt to exploit those characteristics of audio signals that differentiate one from the other. Many algorithms have studied spectral magnitude as a means for separation tasks. Here we propose the exploration of phase information of musical instrument signals as an alternative dimension in discriminating sound signals originating from different sources. Three cases are presented: (1) Phase contours of musical instruments notes as potential separation features. (2) Resolving overlapping harmonics using phase coupling properties of musical instruments. (3) Harmonic percussive decomposition using calculated radian ranges for each frequency bin.
Download Real-Time Guitar Tube Amplifier Simulation using an Approximation of Differential Equations
Digital simulation of guitar tube amplifiers is still an opened topic. The efficient implementation of several parts of the guitar amplifier is presented in this paper. This implementation is based on the pre-computation of the solution of the nonlinear differential system and further approximation of the solution. It reduces the computational complexity while the accuracy is comparable with the numerical solution. The method is used for simulation of different parts of the guitar amplifier, namely a triode preamp stage, a phase splitter and a push-pull amplifier. Finally, the results and comparison with other methods are discussed.
Download A Model of Partial Tracks for Tension-Modulated Steel-String Guitar Tones
This paper introduces a spectral model for plucked, steel string tones, based on functional models for time-varying fundamental frequency and inharmonicity coefficient. Techniques to evaluate those analytical values at different time indexes are reviewed and commented. A method to evaluate the unknowns of the fundamental frequency and inharmonicity coefficient functions and match the data of a given tone is presented. Frequency tracks can thereafter be deployed and traced for all values of time. Their accuracy is discussed, and applications for the model are suggested.
Download Discretization of Parametric Analog Circuits for Real-Time Simulations
The real-time simulation of analog circuits by digital systems becomes problematic when parametric components like potentiometers are involved. In this case the coefficients defining the digital system will change and have to be adapted. One common solution is to recalculate the coefficients in real-time, a possibly computationally expensive operation. With a view to the simulation using state-space representations, two parametric subcircuits found in typical guitar amplifiers are analyzed, namely the tone stack, a linear passive network used as simple equalizer and a distorting preamplifier, limiting the signal amplitude with LEDs. Solutions using trapezoidal rule discretization are presented and discussed. It is shown, that the computational costs in case of recalculation of the coefficients are reduced compared to the related DK-method, due to minimized matrix formulations. The simulation results are compared to reference data and show good match.
Download The DESAM Toolbox: Spectral Analysis of Musical Audio
In this paper is presented the DESAM Toolbox, a set of Matlab functions dedicated to the estimation of widely used spectral models for music signals. Although those models can be used in Music Information Retrieval (MIR) tasks, the core functions of the toolbox do not focus on any specific application. It is rather aimed at providing a range of state-of-the-art signal processing tools that decompose music files according to different signal models, giving rise to different “mid-level” representations. After motivating the need for such a toolbox, this paper offers an overview of the overall organization of the toolbox, and describes all available functionalities.
Download Breaking the Bounds: Introducing Informed Spectral Analysis
Sound applications based on sinusoidal modeling highly depend on the efficiency and the precision of the estimators of its analysis stage. In a previous work, theoretical bounds for the best achievable precision were shown and these bounds are reached by efficient estimators like the reassignment or the derivative methods. We show that it is possible to break these theoretical bounds with just a few additional bits of information of the original content, introducing the concept of “informed analysis”. This paper shows that existing estimators combined with some additional information can reach any expected level of precision, even in very low signal-to-noise ratio conditions, thus enabling high-quality sound effects, without the typical but unwanted musical noise.
Download Fan Chirp Transformation for Music Representation
In this work the Fan Chirp Transform (FChT), which provides an acute representation of harmonically related linear chirp signals, is applied to the analysis of pitch content in polyphonic music. The implementation introduced was devised to be computationally manageable and enables the generalization of the FChT for the analysis of non-linear chirps. The combination with the Constant Q Transform is explored to build a multi-resolution FChT. An existing method to compute pitch salience from the FChT is improved and adapted to handle polyphonic music. In this way a useful melodic content visualization tool is obtained. The results of a frame based melody detection evaluation indicate that the introduced technique is very promising as a front-end for music analysis.
Download Self-Organised Sounds with a Tremolo Oscillator
Tremolo is usually regarded as belonging to the domain of note embellishments. Rapid tremolo, taken into the audio range, is an interesting synthesis technique which is related to FM and granular synthesis. We present a tremolo oscillator, capable of a wide range of sonorities, and illustrate some of its capabilities in applications such as feature-based synthesis and sonification. A reference implementation in Csound is given. The tremolo oscillator is then put into a feedback system, where its output is subject to feature extraction, and the extracted features in turn are mapped to its control parameters. Chaotic orbits in this feedback system guarantee continuous variation, in contrast to the trivial periodic patterns that are easily obtained.
Download A Database of Partial Tracks for Evaluation of Sinusoidal Models
This paper presents a database of partial tracks extracted from synthetic as well as pre-recorded musical signals, designed to serve as an ancillary tool for evaluation of sinusoidal analysis algorithms. In order to accomplish this goal, the database requirements have been carefully specified. A semi-automatic analysis methodology to ensure the track parameters are precisely estimated has been employed. The overall methodology is validated via the application of performance tests over the synthetic source-signals.