Download Modal Based Tanpura Simulation: Combining Tension Modulation and Distributed Bridge Interaction Techniques for the simulation of the tanpura have advanced significantly in recent years allowing numerically stable inclusion of bridge contact. In this paper tension modulation is added to a tanpura model containing a stiff lossy string, distributed bridge contact and the thread. The model is proven to be unconditionally stable and the numerical solver used has a unique solution as a result of choices made in the discretisation process. Effects due to the distribution of the bridge contact forces by comparison to a single point bridge and of introducing the tension modulation are studied in simulations. This model is intended for use in furthering the understanding of the physics of the tanpura and for informing the development of algorithms for sound synthesis of the tanpura and similar stringed instruments.
Download Energy Shaping of a Softening Duffing Oscillator Using the Formalism of Port-Hamiltonian Systems This work takes place in the context of the development of an active control of instruments with geometrical nonlinearities. The study focuses on Chinese opera gongs that display a characteristic pitch glide in normal playing conditions. In the case of the xiaoluo gong, the fundamental mode of the instrument presents a softening behaviour (frequency glides upward when the amplitude decreases). Controlling the pitch glide requires a nonlinear model of the structure, which can be partially identified with experimental techniques that rely on the formalism of nonlinear normal modes. The fundamental nonlinear mode has been previously experimentally identified as a softening Duffing oscillator. This paper aims at performing a simulation of the control of the oscillator’s pitch glide. For this purpose, the study focuses on a single-degree-offreedom nonlinear mode described by a softening Duffing equation. This Duffing oscillator energy proves to be ill-posed - in particular, the energy becomes negative for large amplitudes of vibration, which is physically inconsistent. Then, the first step of the present study consists in redefining a new energetically well-posed model. In a second part, guaranteed-passive simulations using port-Hamiltonian formalism confirm that the new system is physically and energetically correct compared to the Duffing model. Third, the model is used for control issues in order to modify the softening or hardening behaviour of the fundamental pitch glide. Results are presented and prove the method to be relevant. Perspectives for experimental applications are finally exposed in the last section of the paper.
Download CYMATIC: A tactile controlled physical modelling instrument The recent trend towards the virtual in music synthesis has lead to the inevitable decline of the physical, inserting what might be described as a ‘veil of tactile paralysis’ between the musician and the sound source. The addition of tactile and gestural interfaces to electronic musical instruments offers the possibility of moving some way towards reversing this trend. This paper describes a new computer based musical instrument, known as Cymatic, which offers gestural control as well as tactile and proprioceptive feedback via a force feedback joystick and a tactile feedback mouse. Cymatic makes use of a mass/spring physical modelling paradigm to model multi-dimensional, interconnectable resonating structures that can be played in real-time with various excitation methods. It therefore restores to a degree the musician’s sense of working with a true physical instrument in the natural world. Cymatic has been used in a public performance of a specially composed work, which is described.
Download Distributed Single-Reed Modeling Based on Energy Quadratization and Approximate Modal Expansion Recently, energy quadratization and modal expansion have become popular methods for developing efficient physics-based
sound synthesis algorithms. These methods have been primarily
used to derive explicit schemes modeling the collision between
a string and a fixed barrier. In this paper, these techniques are
applied to a similar problem: modeling a distributed mouthpiece
lay-reed-lip interaction in a woodwind instrument. The proposed
model aims to provide a more accurate representation of how a musician’s embouchure affects the reed’s dynamics. The mouthpiece
and lip are modeled as distributed static and dynamic viscoelastic
barriers, respectively. The reed is modeled using an approximate
modal expansion derived via the Rayleigh-Ritz method. The reed
system is then acoustically coupled to a measured input impedance
response of a saxophone. Numerical experiments are presented.
Download The Wablet: Scanned Synthesis on a Multi-Touch Interface This paper presents research into scanned synthesis on a multitouch screen device. This synthesis technique involves scanning a wavetable that is dynamically evolving in the manner of a massspring network. It is argued that scanned synthesis can provide a good solution to some of the issues in digital musical instrument design, and is particularly well suited to multi-touch screens. In this implementation, vibrating mass-spring networks with a variety of configurations can be created. These can be manipulated by touching, dragging and altering the orientation of the tablet. Arbitrary scanning paths can be drawn onto the structure. Several extensions to the original scanned synthesis technique are proposed, most important of which for multi-touch implementations is the freedom of the masses to move in two dimensions. An analysis of the scanned output in the case of a 1D ideal string model is given, and scanned synthesis is also discussed as being a generalisation of a number of other synthesis methods.
Download A Real-Time Synthesis Oriented Tanpura Model Physics-based synthesis of tanpura drones requires accurate simulation of stiff, lossy string vibrations while incorporating sustained contact with the bridge and a cotton thread. Several challenges arise from this when seeking efficient and stable algorithms for real-time sound synthesis. The approach proposed here to address these combines modal expansion of the string dynamics with strategic simplifications regarding the string-bridge and stringthread contact, resulting in an efficient and provably stable timestepping scheme with exact modal parameters. Attention is given also to the physical characterisation of the system, including string damping behaviour, body radiation characteristics, and determination of appropriate contact parameters. Simulation results are presented exemplifying the key features of the model.
Download Real-Time Reverb Simulation Using Arbitrary Models We present a method for simulating reverberation in real-time using arbitrary object shapes. This method is an extension of digital plate reverberation where a dry signal is filtered through a physical model of an object vibrating in response to audio input. Using the modal synthesis method, we can simulate the vibration of many different shapes and materials in real time. Sound samples are available at the follwing website: http://cynthia.code404.com/dafx-audio/.
Download Simulating the Friction Sounds Using a Friction-based Adhesion Theory Model Synthesizing a friction sound of deformable objects by a computer is challenging. We propose a novel physics-based approach to synthesize friction sounds based on dynamics simulation. In this work, we calculate the elastic deformation of an object surface when the object comes in contact with other objects. The principle of our method is to divide an object surface into microrectangles. The deformation of each microrectangle is set using two assumptions: the size of a microrectangle (1) changes by contacting other object and (2) obeys a normal distribution. We consider the sound pressure distribution and its space spread, consisting of vibrations of all microrectangles, to synthesize a friction sound at an observation point. We express the global motions of an object by position based dynamics where we add an adhesion constraint. Our proposed method enables the generation of friction sounds of objects in different materials by regulating the initial value of microrectangular parameters.
Download Gestural Auditory and Visual Interactive Platform This paper introduces GAVIP, an interactive and immersive platform allowing for audio-visual virtual objects to be controlled in real-time by physical gestures and with a high degree of intermodal coherency. The focus is particularly put on two scenarios exploring the interaction between a user and the audio, visual, and spatial synthesis of a virtual world. This platform can be seen as an extended virtual musical instrument that allows an interaction with three modalities: the audio, visual and spatial modality. Intermodal coherency is thus of particular importance in this context. Possibilities and limitations offered by the two developed scenarios are discussed and future work presented.
Download Recognition Of Ellipsoids From Acoustic Cues Ideal three-dimensional resonators are “labeled” (identified) by infinite sequences of resonance modes, whose distribution depends on the resonator shape. We are investigating the ability of human beings to recognize these shapes by auditory spectral cues. Rather than focusing on a precise simulation of the resonator, we want to understand if the recognition takes place using simplified “cartoon” models, just providing the first resonances that identify a shape. In fact, such models can be easily translated into efficient algorithms for real-time sound synthesis in contexts of human-machine interaction, where the resonator shape and other rendering parameters can be interactively manipulated. This paper describes the method we have followed to come up with an application that, executed in real-time, can be used in listening tests of shape recognition and together with human-computer interfaces.