Download On Iterative Solutions for Numerical Collision Models
Nonlinear interactions between different parts of musical instruments present several challenges regarding the formulation of reliable and efficient numerical sound synthesis models. This paper focuses on a numerical collision model that incorporates impact damping. The proposed energy-based approach involves an iterative solver for the solution of the nonlinear system equations. In order to ensure the efficiency of the presented algorithm a bound is derived for the maximum number of iterations required for convergence. Numerical results demonstrate energy conservation as well as convergence within a small number of iterations, which is usually much lower than the predicted bound. Finally, an application to music acoustics, involving a clarinet simulation, shows that including a loss mechanism during collisions may have a significant effect on sound production.
Download Unsupervised Taxonomy of Sound Effects
Sound effect libraries are commonly used by sound designers in a range of industries. Taxonomies exist for the classification of sounds into groups based on subjective similarity, sound source or common environmental context. However, these taxonomies are not standardised, and no taxonomy based purely on the sonic properties of audio exists. We present a method using feature selection, unsupervised learning and hierarchical clustering to develop an unsupervised taxonomy of sound effects based entirely on the sonic properties of the audio within a sound effect library. The unsupervised taxonomy is then related back to the perceived meaning of the relevant audio features.
Download Kinematics of Ideal String Vibration Against a Rigid Obstacle
This paper presents a kinematic time-stepping modeling approach of the ideal string vibration against a rigid obstacle. The problem is solved in a single vibration polarisation setting, where the string’s displacement is unilaterally constrained. The proposed numerically accurate approach is based on the d’Alembert formula. It is shown that in the presence of the obstacle the lossless string vibrates in two distinct vibration regimes. In the beginning of the nonlinear kinematic interaction between the vibrating string and the obstacle the string motion is aperiodic with constantly evolving spectrum. The duration of the aperiodic regime depends on the obstacle proximity, position, and geometry. During the aperiodic regime the fractional subharmonics related to the obstacle position may be generated. After relatively short-lasting aperiodic vibration the string vibration settles in the periodic regime. The main general effect of the obstacle on the string vibration manifests in the widening of the vibration spectra caused by transfer of fundamental mode energy to upper modes. The results presented in this paper can expand our understanding of timbre evolution of numerous stringed instruments, such as, the guitar, bray harp, tambura, veena, sitar, etc. The possible applications include, e.g., real-time sound synthesis of these instruments.
Download Binauralization of Omnidirectional Room Impulse Responses - Algorithm and Technical Evaluation
The auralization of acoustic environments over headphones is often realized with data-based dynamic binaural synthesis. The required binaural room impulse responses (BRIRs) for the convolution process can be acquired by performing measurements with an artificial head for different head orientations and positions. This procedure is rather costly and therefore not always feasible in practice. Because a plausible representation is sufficient for many practical applications, a simpler approach is of interest. In this paper we present the BinRIR (Binauralization of omnidirectional room impulse responses) algorithm, which synthesizes BRIR datasets for dynamic auralization based on a single measured omnidirectional room impulse response (RIR). Direct sound, early reflections, and diffuse reverberation are extracted from the omnidirectional RIR and are separately spatialized. Spatial information is added according to assumptions about the room geometry and on typical properties of diffuse reverberation. The early part of the RIR is described by a parametric model and can easily be modified and adapted. Thus the approach can even be enhanced by considering modifications of the listener position. The late reverberation part is synthesized using binaural noise, which is adapted to the energy decay curve of the measured RIR. In order to examine differences between measured and synthesized BRIRs, we performed a technical evaluation for two rooms. Measured BRIRs are compared to synthesized BRIRs and thus we analyzed the inaccuracies of the proposed algorithm.
Download Generalizing Root Variable Choice in Wave Digital Filters with Grouped Nonlinearities
Previous grouped-nonlinearity formulations for Wave Digital Filter (WDF) modeling of nonlinear audio circuits assumed that nonlinear (NL) devices with memoryless voltage–current characteristics were modeled as voltage-controlled current sources (VCCSs). These formulations cannot accommodate nonlinear devices whose equations cannot be written as NL VCCSs, and they cannot accommodate circuits with cutsets composed entirely of current sources (including NL VCCSs). In this paper we generalize independent and dependent variable choice at the root of WDF trees to accommodate both these cases, and review two graph theorems for avoiding forbidden cutsets and loops in general.
Download WDF Modeling of a Korg MS-50 Based Non-linear Diode Bridge VCF
The voltage-controlled low-pass filter of the Korg MS-50 synthesizer is built around a non-linear diode bridge as the cutoff frequency control element, which greatly contributes to the sound of this vintage synthesizer. In this paper, we introduce the overall filter circuitry and give an in-depth analysis of this diode bridge. It is further shown how to turn the small signal equivalence circuit of the bridge into the necessary two-resistor configuration to uncover the underlying Sallen-Key structure. In a second step, recent advances in the field of WDFs are used to turn a simplified version of the circuit into a virtual-analog model. This model is then examined both in the small-signal linear domain as well as in the non-linear region with inputs of different amplitudes and frequencies to characterize the behavior of such diode bridges as cutoff frequency control elements.
Download Pinna Morphological Parameters Influencing HRTF Sets
Head-Related Transfer Functions (HRTFs) are one of the main aspects of binaural rendering. By definition, these functions express the deep linkage that exists between hearing and morphology especially of the torso, head and ears. Although the perceptive effects of HRTFs is undeniable, the exact influence of the human morphology is still unclear. Its reduction into few anthropometric measurements have led to numerous studies aiming at establishing a ranking of these parameters. However, no consensus has yet been set. In this paper, we study the influence of the anthropometric measurements of the ear, as defined by the CIPIC database, on the HRTFs. This is done through the computation of HRTFs by Fast Multipole Boundary Element Method (FM-BEM) from a parametric model of torso, head and ears. Their variations are measured with 4 different spectral metrics over 4 frequency bands spanning from 0 to 16kHz. Our contribution is the establishment of a ranking of the selected parameters and a comparison to what has already been obtained by the community. Additionally, a discussion over the relevance of each approach is conducted, especially when it relies on the CIPIC data, as well as a discussion over the CIPIC database limitations.
Download EVERTims: Open Source Framework for Real-time Auralization in Architectural Acoustics and Virtual Reality
This paper presents recent developments of the EVERTims project, an auralization framework for virtual acoustics and real-time room acoustic simulation. The EVERTims framework relies on three independent components: a scene graph editor, a room acoustic modeler, and a spatial audio renderer for auralization. The framework was first published and detailed in [1, 2]. Recent developments presented here concern the complete re-design of the scene graph editor unit, and the C++ implementation of a new spatial renderer based on the JUCE framework. EVERTims now functions as a Blender add-on to support real-time auralization of any 3D room model, both for its creation in Blender and its exploration in the Blender Game Engine. The EVERTims framework is published as open source software: http://evertims.ircam. fr.
Download On Restoring Prematurely Truncated Sine Sweep Room Impulse Response Measurements
When measuring room impulse responses using swept sinusoids, it often occurs that the sine sweep room response recording is terminated soon after either the sine sweep ends or the long-lasting low-frequency modes fully decay. In the presence of typical acoustic background noise levels, perceivable artifacts can emerge from the process of converting such a prematurely truncated sweep response into an impulse response. In particular, a low-pass noise process with a time-varying cutoff frequency will appear in the measured room impulse response, a result of the frequency-dependent time shift applied to the sweep response to form the impulse response. Here, we detail the artifact, describe methods for restoring the impulse response measurement, and present a case study using measurements from the Berkeley Art Museum shortly before its demolition. We show that while the difficulty may be avoided using circular convolution, nonlinearities typical of loudspeakers will corrupt the room impulse response. This problem can be alleviated by stitching synthesized noise onto the end of the sweep response before converting it into an impulse response. Two noise synthesis methods are described: the first uses a filter bank to estimate the frequency-dependent measurement noise power and then filter synthesized white Gaussian noise. The second uses a linearphase filter formed by smoothing the recorded noise across perceptual bands to filter Gaussian noise. In both cases, we demonstrate that by time-extending the recording with noise similar to the recorded background noise that we can push the problem out in time such that it no longer interferes with the measured room impulse response.
Download Constrained Pole Optimization for Modal Reverberation
The problem of designing a modal reverberator to match a measured room impulse response is considered. The modal reverberator architecture expresses a room impulse response as a parallel combination of resonant filters, with the pole locations determined by the room resonances and decay rates, and the zeros by the source and listener positions. Our method first estimates the pole positions in a frequency-domain process involving a series of constrained pole position optimizations in overlapping frequency bands. With the pole locations in hand, the zeros are fit to the measured impulse response using least squares. Example optimizations for a mediumsized room show a good match between the measured and modeled room responses.