Download Pyroadacoustics: A Road Acoustics Simulator Based on Variable Length Delay Lines In the development of algorithms for sound source detection, identification and localization, having the possibility to generate datasets in a flexible and fast way is of utmost importance. However, most of the available acoustic simulators used for this purpose target indoor applications, and their usefulness is limited when it comes to outdoor environments such as that of a road, involving fast moving sources and long distances travelled by the sound waves. In this paper we present an acoustic propagation simulator specifically designed for road scenarios. In particular, the proposed Python software package enables to simulate the observed sound resulting from a source moving on an arbitrary trajectory relative to the observer, exploiting variable length delay lines to implement sound propagation and Doppler effect. An acoustic model of the road reflection and air absorption properties has been designed and implemented using digital FIR filters. The architecture of the proposed software is flexible and open to extensions, allowing the package to kick-start the implementation of further outdoor acoustic simulation scenarios.
Download Continuous State Modeling for Statistical Spectral Synthesis Continuous State Markovian Spectral Modeling is a novel approach for parametric synthesis of spectral modeling parameters, based on the sines plus noise paradigm. The method aims specifically at capturing shimmer and jitter - micro-fluctuations in the partials’ frequency and amplitude trajectories, which are essential for the timbre of musical instruments. It allows for parametric control over the timbral qualities, while removing the need for the more computationally expensive and restrictive process of the discrete state space modeling method. A qualitative comparison between an original violin sound and a re-synthesis shows the ability of the algorithm to reproduce the micro-fluctuations, considering their stochastic and spectral properties.
Download Analysis of Musical Dynamics in Vocal Performances Using Loudness Measures In addition to tone, pitch and rhythm, dynamics is one of the expressive dimensions of the performance of a music piece that has received limited attention. While the usage of dynamics may vary from artist to artist, and also from performance to performance, a systematic methodology to automatically identify the dynamics of a performance in terms of musically meaningful terms like forte, piano may offer valuable feedback in the context of music education and in particular in singing. To this end, we have manually annotated the dynamic markings of commercial recordings of popular rock and pop songs from the Smule Vocal Balanced (SVB) dataset which will be used as reference data. Then as a first step for our research goal, we propose a method to derive and compare singing voice loudness curves in polyphonic mixtures. Towards measuring the similarity and variation of dynamics, we compare the dynamics curves of the SVB renditions with the one derived from the original songs. We perform the same comparison using professionally produced renditions from a karaoke website. We relate high values of Spearman correlation coefficient found in some select student renditions and the professional renditions with accurate dynamics.
Download A Virtual Analog Model of the Edp Wasp VCF In this paper we present a virtual analog model of the voltagecontrolled filter used in the EDP Wasp synthesizer. This circuit is an interesting case study for virtual analog modeling due to its characteristic nonlinear and highly dynamic behavior which can be attributed to its unusual design. The Wasp filter consists of a state variable filter topology implemented using operational transconductance amplifiers (OTAs) as the cutoff-control elements and CMOS inverters in lieu of operational amplifiers, all powered by a unipolar power supply. In order to accurately model the behavior of the circuit we propose extended models for its nonlinear components, focusing particularly on the OTAs. The proposed component models are used inside a white-box circuit modeling framework to create a digital simulation of the filter which retains the interesting characteristics of the original device.
Download Subjective Evaluation of Sound Quality and Control of Drum Synthesis with Stylewavegan In this paper we investigate into perceptual properties of StyleWaveGAN, a drum synthesis method proposed in a previous publication. For both, the sound quality as well as the control precision StyleWaveGAN has been shown to deliver state of the art performance for quantitative metrics (FAD and MSE of the control parameters). The present paper aims to provide insight into the perceptual relevance of these results. Accordingly, we performed a subjective evaluation of the sound quality as well as a subjective evaluation of the precision of the control using timbre descriptors from the AudioCommons toolbox. We evaluate the sound quality with mean opinion score and make measurements of psychophysical response to the variations of the control. By means of the perceptual tests, we demonstrate that StyleWaveGAN produces better sound quality than state-of-the-art model DrumGAN and that the mean control error is lower than the absolute threshold of perception at every point of measurement used in the experiment.
Download A Structural Similarity Index Based Method to Detect Symbolic Monophonic Patterns in Real-Time Automatic detection of musical patterns is an important task in the field of Music Information Retrieval due to its usage in multiple applications such as automatic music transcription, genre or instrument identification, music classification, and music recommendation. A significant sub-task in pattern detection is the realtime pattern detection in music due to its relevance in application domains such as the Internet of Musical Things. In this study, we present a method to identify the occurrence of known patterns in symbolic monophonic music streams in real-time. We introduce a matrix-based representation to denote musical notes using its pitch, pitch-bend, amplitude, and duration. We propose an algorithm based on an independent similarity index for each note attribute. We also introduce the Match Measure, which is a numerical value signifying the degree of the match between a pattern and a sequence of notes. We have tested the proposed algorithm against three datasets: a human recorded dataset, a synthetically designed dataset, and the JKUPDD dataset. Overall, a detection rate of 95% was achieved. The low computational load and minimal running time demonstrate the suitability of the method for real-world, real-time implementations on embedded systems.