Download Practical Virtual Analog Modeling Using Möbius Transforms Möbius transforms provide for the definition of a family of onestep discretization methods offering a framework for alleviating
well-known limitations of common one-step methods, such as the
trapezoidal method, at no cost in model compactness or complexity. In this paper, we extend the existing theory around these methods. Here, we show how it can be applied to common frameworks
used to structure virtual analog models. Then, we propose practical strategies to tune the transform parameters for best simulation
results. Finally, we show how such strategies enable us to formulate much improved non-oversampled virtual analog models for
several historical audio circuits.
Download Amp-Space: A Large-Scale Dataset for Fine-Grained Timbre Transformation We release Amp-Space, a large-scale dataset of paired audio
samples: a source audio signal, and an output signal, the result of
a timbre transformation. The types of transformations we study
are from blackbox musical tools (amplifiers, stompboxes, studio
effects) traditionally used to shape the sound of guitar, bass, or
synthesizer sounds. For each sample of transformed audio, the
set of parameters used to create it are given. Samples are from
both real and simulated devices, the latter allowing for orders of
magnitude greater data than found in comparable datasets. We
demonstrate potential use cases of this data by (a) pre-training a
conditional WaveNet model on synthetic data and show that it reduces the number of samples necessary to digitally reproduce a
real musical device, and (b) training a variational autoencoder to
shape a continuous space of timbre transformations for creating
new sounds through interpolation.
Download Topologizing Sound Synthesis via Sheaves In recent years, a range of topological methods have emerged for
processing digital signals. In this paper we show how the construction of topological filters via sheaves can be used to topologize
existing sound synthesis methods. I illustrate this process on two
classes of synthesis approaches: (1) based on linear-time invariant digital filters and (2) based on oscillators defined on a circle.
We use the computationally-friendly approach to modeling topologies via a simplicial complex, and we attach our classical synthesis
methods to them via sheaves. In particular, we explore examples
of simplicial topologies that mimic sampled lines and loops. Over
these spaces we realize concrete examples of simple discrete harmonic oscillators (resonant filters), and simple comb filter based
algorithms (such as Karplus-Strong) as well as frequency modulation.
Download Modal Spring Reverb Based on Discretisation of the Thin Helical Spring Model The distributed nature of coupling in helical springs presents specific challenges in obtaining efficient computational structures
for accurate spring reverb simulation. For direct simulation approaches, such as finite-difference methods, this is typically manifested in significant numerical dispersion within the hearing range.
Building on a recent study of a simpler spring model, this paper presents an alternative discretisation approach that employs
higher-order spatial approximations and applies centred stencils at
the boundaries to address the underlying linear-system eigenvalue
problem. Temporal discretisation is then applied to the resultant
uncoupled mode system, rendering an efficient and flexible modal
reverb structure. Through dispersion analysis it is shown that numerical dispersion errors can be kept extremely small across the
hearing range for a relatively low number of system nodes. Analysis of an impulse response simulated using model parameters calculated from a measured spring geometry confirms that the model
captures an enhanced set of spring characteristics.
Download Optimal Integer Order Approximation of Fractional Order Filters Fractional order filters have been studied since a long time,
along with their applications to many areas of physics and engineering. In particular, several solutions have been proposed in
order to approximate their frequency response with that of an ordinary filter. In this paper, we tackle this problem with a new approach: we solve analytically a simplified version of the problem
and we find the optimal placement of poles and zeros, giving a
mathematical proof and an error estimate. This solution shows improved performance compared to the current state of the art and is
suitable for real-time parametric control.
Download Spherical Decomposition of Arbitrary Scattering Geometries for Virtual Acoustic Environments A method is proposed to encode the acoustic scattering of objects for virtual acoustic applications through a multiple-input and
multiple-output framework. The scattering is encoded as a matrix in the spherical harmonic domain, and can be re-used and
manipulated (rotated, scaled and translated) to synthesize various
sound scenes. The proposed method is applied and validated using
Boundary Element Method simulations which shows accurate results between references and synthesis. The method is compatible
with existing frameworks such as Ambisonics and image source
methods.
Download Alloy Sounds: Non-Repeating Sound Textures With Probabilistic Cellular Automata Contemporary musicians commonly face the challenge of finding
new, characteristic sounds that can make their compositions more
distinct. They often resort to computers and algorithms, which can
significantly aid in creative processes by generating unexpected
material in controlled probabilistic processes. In particular, algorithms that present emergent behaviors, like genetic algorithms
and cellular automata, have fostered a broad diversity of musical explorations. This article proposes an original technique for
the computer-assisted creation and manipulation of sound textures.
The technique uses Probabilistic Cellular Automata, which are yet
seldom explored in the music domain, to blend two audio tracks
into a third, different one. The proposed blending process works
by dividing the source tracks into frequency bands and then associating each of the automaton’s cell to a frequency band. Only one
source, chosen by the cell’s state, is active within each band. The
resulting track has a non-repeating textural pattern that follows the
changes in the Cellular Automata. This blending process allows
the musician to choose the original material and the blend granularity, significantly changing the resulting blends. We demonstrate
how to use the proposed blending process in sound design and its
application in experimental and popular music.
Download Non-Iterative Schemes for the Simulation of Nonlinear Audio Circuits In this work, a number of numerical schemes are presented in the
context of virtual-analog simulation. The schemes are linearlyimplicit in character, and hence directly solvable without iterative
methods. Schemes of increasing order of accuracy are constructed,
and convergence and stability conditions are proven formally. The
schemes are able to handle stiff problems very efficiently, because
of their fast update, and can be run at higher sample rates to reduce
aliasing. The cases of the diode clipper and ring modulator are
investigated in detail, including several numerical examples.
Download Quality Diversity for Synthesizer Sound Matching It is difficult to adjust the parameters of a complex synthesizer to
create the desired sound. As such, sound matching, the estimation of synthesis parameters that can replicate a certain sound, is
a task that has often been researched, utilizing optimization methods such as genetic algorithm (GA). In this paper, we introduce a
novelty-based objective for GA-based sound matching. Our contribution is two-fold. First, we show that the novelty objective is
able to improve the quality of sound matching by maintaining phenotypic diversity in the population. Second, we introduce a quality diversity approach to the problem of sound matching, aiming
to find a diverse set of matching sounds. We show that the novelty objective is effective in producing high-performing solutions
that are diverse in terms of specified audio features. This approach
allows for a new way of discovering sounds and exploring the capabilities of a synthesizer.
Download Exposure Bias and State Matching in Recurrent Neural Network Virtual Analog Models Virtual analog (VA) modeling using neural networks (NNs) has
great potential for rapidly producing high-fidelity models. Recurrent neural networks (RNNs) are especially appealing for VA due
to their connection with discrete nodal analysis. Furthermore, VA
models based on NNs can be trained efficiently by directly exposing them to the circuit states in a gray-box fashion. However,
exposure to ground truth information during training can leave the
models susceptible to error accumulation in a free-running mode,
also known as “exposure bias” in machine learning literature. This
paper presents a unified framework for treating the previously
proposed state trajectory network (STN) and gated recurrent unit
(GRU) networks as special cases of discrete nodal analysis. We
propose a novel circuit state-matching mechanism for the GRU
and experimentally compare the previously mentioned networks
for their performance in state matching, during training, and in exposure bias, during inference. Experimental results from modeling
a diode clipper show that all the tested models exhibit some exposure bias, which can be mitigated by truncated backpropagation
through time. Furthermore, the proposed state matching mechanism improves the GRU modeling performance of an overdrive
pedal and a phaser pedal, especially in the presence of external
modulation, apparent in a phaser circuit.