Download Doppler Simulation and the Leslie
An efficient algorithm for simulating the Doppler effect using interpolating and de-interpolating delay lines is described. The Doppler simulator is used to simulate a rotating horn to achieve the Leslie effect. Measurements of a horn from a real Leslie are used to calibrate angle-dependent digital filters which simulate the changing, angle-dependent, frequency response of the rotating horn.
Download Sound Effects for a Silent Computer System
This paper proposes the sonification of the activity of a computer system that allows the user to monitor the basic performance parameters of the system, like CPU load, read and write activity of the hard disk or network traffic. Although, current computer systems still produce acoustic background noise, future and emerging computer systems will be more and more optimized with respect to their noise emission. In contrast to most of the concepts of auditory feedback, which present a particular sound as a feedback to a user’s command, the proposed feedback is mediated by the running computer system. The user’s interaction stimulates the system and hence the resulting feedback offers more realistic information about the current states of performance of the system. On the one hand the proposed sonification can mimic the acoustical behavior of operating components inside a computer system, while on the other hand, new qualities can be synthesized that enrich interaction with the device. Different forms of sound effects and generation for the proposed auditory feedback are realized to experiment with the usage in an environment of silent computer systems.
Download An Extension for Source Separation Techniques Avoiding Beats
The problem of separating individual sound sources from a mixture of these, known as Source Separation or Computational Auditory Scene Analysis (CASA), has become popular in the recent decades. A number of methods have emerged from the study of this problem, some of which perform very well for certain types of audio sources, e.g. speech. For separation of instruments in music, there are several shortcomings. In general when instruments play together they are not independent of each other. More specifically the time-frequency distributions of the different sources will overlap. Harmonic instruments in particular have high probability of overlapping partials. If these overlapping partials are not separated properly, the separated signals will have a different sensation of roughness, and the separation quality degrades. In this paper we present a method to separate overlapping partials in stereo signals. This method looks at the shapes of partial envelopes, and uses minimization of the difference between such shapes in order to demix overlapping partials. The method can be applied to enhance existing methods for source separation, e.g. blind source separation techniques, model based techniques, and spatial separation techniques. We also discuss other simpler methods that can work with mono signals.
Download Audio Signal Extrapolation - Theory and Applications
A method for extrapolating discrete audio signals is described. The theory of extrapolation is studied and some applications are presented and demonstrated. The extrapolation method is fast and capable of extrapolating several thousand samples of CD-quality audio signals. The extrapolation is applied in practice to enhance the spectral resolution in short-time fast Fourier transform based methods. It is also applied to eliminate impulsive noise bursts and to recover missing signal sections.
Download Efficient Modeling and Synthesis of Bell-like Sounds
This paper describes two different techniques that can be used to model and synthesize bell-like sounds. The first one is a sourcefilter model based on frequency-zooming ARMA (pole-zero) modeling techniques. The frequency-zooming approach is powerful also in modal analysis of bell sound behavior. The second technique is based on a digital waveguide with a single loop filter that is designed to generate inharmonic partials by including one or more second-order allpass sections in the loop filter, possibly augmented with one or a few parallel resonators. A small handbell with inharmonic partials was recorded and used as a target of modeling and synthesis. Sound examples are found in http://www.acoustics.hut.fi/demos/dafx02/.
Download Automatic Polyphonic Piano Note Extraction Using Fuzzy Logic in a Blackboard System
This paper presents a piano transcription system that transforms audio into MIDI format. Human knowledge and psychoacoustic models are implemented in a blackboard architecture, which allows the adding of knowledge with a top-down approach. The analysis is adapted to the information acquired. This technique is referred to as a prediction-driven approach, and it attempts to simulate the adaptation and prediction process taking place in human auditory perception. In this paper we describe the implementation of Polyphonic Note Recognition using a Fuzzy Inference System (FIS) as part of the Knowledge sources in a Blackboard system. The performance of the transcription system shows how polyphonic music transcription is still an unsolved problem, with a success of 45% according to the Dixon formula. However if we consider only the transcribed notes the success increases to 74%. Moreover, the results obtained in the paper presented in [1], show how the transcription can be used with success in a retrieval system, encouraging the authors to develop this technique for more accurate transcription results.
Download The Sounds of the Avian Syrinx - are they Really Flute-Like?
This research presents a model of the avian vocal tract, implemented using classical waveguide synthesis and numerical methods. The vocal organ of the songbird, the syrinx, has a unique topography of acoustic tubes (a trachea with a bifurcation at its base) making it a rather unique subject for waveguide synthesis. In the upper region of the two bifid bronchi lies a nonlinear vibrating membrane – the primary resonator in sound production. Unlike most reed musical instruments, the more significant displacement of the membrane is perpendicular to the directions of airflow, due to the Bernoulli effect. The model of the membrane displacement, and the resulting pressure through the constriction created by the membrane motion, is therefore derived beginning with the Bernoulli equation.
Download Realization of a Diffuse Sound Field with a PC-Based Sound Card Solution
For the quality assessment of headphones, especially the loudness measuring of headphones, a diffuse sound field is required. At this time a hardware based noise generator, one-third octave filters built up in analog mode as well as boosters are used. In this work a flexible PC-based solution with the aid of a sound card is presented. Therefore ten independent noise generators, generating Gaussian distributed white noise, are needed. The implementation using the ’Dynamic Creation of Pseudorandom Number Genrators’ for ’Mersenne Twister’ is described. A probability transformation to convert equal distributed numbers into Gaussian distributed ones is derived in detail. Furthermore one-third octave filters are designed and implemented according to the ANSI standard. The access to the sound card is provided using the Wave-API library under Microsoft Windows. This work was carried out at Sennheiser electronic GmbH in Wennebostel (Germany) in the development department for cord based headphones.
Download Audio Signal Processing and Object-oriented Systems
Object-oriented programming (OOP) has been for many years now one of the most important programming paradigms used in a variety of applications. Digital audio signal processing can benefit largely from this approach for systems development. In this paper a number of approaches to using object-orientation in audio processing systems are reviewed. Existing systems of audio processing are introduced and discussed in detail. The paper also draws attention to the different OOP techniques enabled and supported by these systems. Comparative code and tutorial examples are included, providing an insight into the development of signal processing applications using objects.
Download Smoothing of the Control Signal without Clipped Output in Digital Peak Limiters
This paper studies the reduction of nonlinearity of digital peak limiters used for maximizing signal levels. The goal is to control the time-varying gain smoothly enough to avoid frequency artifacts in the output signal. Smoother gain control is traditionally obtained by lowpass Þltering the gain or the signal envelope. However, simple Þltering causes overshoots and leads to either clipped output or non-maximal signal levels, depending on the gain applied to the limiter output. In order to obtain smooth gain control without clipping, this paper proposes an envelope detection method based on order-statistics Þltering.