Download HD-AD: A New Approach to Audio Atomic Decomposition with Hyperdimensional Computing In this paper, we approach the problem of atomic decomposition of audio at the symbolic level of atom parameters through the lens of hyperdimensional computing (HDC) – a non-traditional computing paradigm. Existing atomic decomposition algorithms often operate using waveforms from a redundant dictionary of atoms causing them to become increasingly memory/computationally intensive as the signal length grows and/or the atoms become more complicated. We systematically build an atom encoding using vector function architecture (VFA), a field of HDC. We train a neural network encoder on synthetic audio signals to generate these encodings and observe that the network can generalize to real recordings. This system, we call Hyperdimensional Atomic Decomposition (HD-AD), avoids time-domain correlations all together. Because HD-AD scales with the sparsity of the signal, rather than its length in time, atomic decompositions are often produced much faster than real-time.
Download A Study of Control Methods for Percussive Sound Synthesis Based on Gans The process of creating drum sounds has seen significant evolution in the past decades. The development of analogue drum synthesizers, such as the TR-808, and modern sound design tools in Digital Audio Workstations led to a variety of drum timbres that defined entire musical genres. Recently, drum synthesis research has been revived with a new focus on training generative neural networks to create drum sounds. Different interfaces have previously been proposed to control the generative process, from low-level latent space navigation to high-level semantic feature parameterisation, but no comprehensive analysis has been presented to evaluate how each approach relates to the creative process. We aim to evaluate how different interfaces support creative control over drum generation by conducting a user study based on the Creative Support Index. We experiment with both a supervised method that decodes semantic latent space directions and an unsupervised Closed-Form Factorization approach from computer vision literature to parameterise the generation process and demonstrate that the latter is the preferred means to control a drum synthesizer based on the StyleGAN2 network architecture.
Download Grey-Box Modelling of Dynamic Range Compression This paper explores the digital emulation of analog dynamic range compressors, proposing a grey-box model that uses a combination of traditional signal processing techniques and machine learning. The main idea is to use the structure of a traditional digital compressor in a machine learning framework, so it can be trained end-to-end to create a virtual analog model of a compressor from data. The complexity of the model can be adjusted, allowing a trade-off between the model accuracy and computational cost. The proposed model has interpretable components, so its behaviour can be controlled more readily after training in comparison to a black-box model. The result is a model that achieves similar accuracy to a black-box baseline, whilst requiring less than 10% of the number of operations per sample at runtime.
Download Feature-Informed Latent Space Regularization for Music Source Separation The integration of additional side information to improve music source separation has been investigated numerous times, e.g., by adding features to the input or by adding learning targets in a multi-task learning scenario. These approaches, however, require additional annotations such as musical scores, instrument labels, etc. in training and possibly during inference. The available datasets for source separation do not usually provide these additional annotations. In this work, we explore transfer learning strategies to incorporate VGGish features with a state-of-the-art source separation model; VGGish features are known to be a very condensed representation of audio content and have been successfully used in many music information retrieval tasks. We introduce three approaches to incorporate the features, including two latent space regularization methods and one naive concatenation method. Our preliminary results show that our proposed approaches could improve some evaluation metrics for music source separation. In this work, we also include a discussion of our proposed approaches, such as the pros and cons of each approach, and the potential extension/improvement.
Download A Structural Similarity Index Based Method to Detect Symbolic Monophonic Patterns in Real-Time Automatic detection of musical patterns is an important task in the field of Music Information Retrieval due to its usage in multiple applications such as automatic music transcription, genre or instrument identification, music classification, and music recommendation. A significant sub-task in pattern detection is the realtime pattern detection in music due to its relevance in application domains such as the Internet of Musical Things. In this study, we present a method to identify the occurrence of known patterns in symbolic monophonic music streams in real-time. We introduce a matrix-based representation to denote musical notes using its pitch, pitch-bend, amplitude, and duration. We propose an algorithm based on an independent similarity index for each note attribute. We also introduce the Match Measure, which is a numerical value signifying the degree of the match between a pattern and a sequence of notes. We have tested the proposed algorithm against three datasets: a human recorded dataset, a synthetically designed dataset, and the JKUPDD dataset. Overall, a detection rate of 95% was achieved. The low computational load and minimal running time demonstrate the suitability of the method for real-world, real-time implementations on embedded systems.
Download Subjective Evaluation of Sound Quality and Control of Drum Synthesis with Stylewavegan In this paper we investigate into perceptual properties of StyleWaveGAN, a drum synthesis method proposed in a previous publication. For both, the sound quality as well as the control precision StyleWaveGAN has been shown to deliver state of the art performance for quantitative metrics (FAD and MSE of the control parameters). The present paper aims to provide insight into the perceptual relevance of these results. Accordingly, we performed a subjective evaluation of the sound quality as well as a subjective evaluation of the precision of the control using timbre descriptors from the AudioCommons toolbox. We evaluate the sound quality with mean opinion score and make measurements of psychophysical response to the variations of the control. By means of the perceptual tests, we demonstrate that StyleWaveGAN produces better sound quality than state-of-the-art model DrumGAN and that the mean control error is lower than the absolute threshold of perception at every point of measurement used in the experiment.
Download Improved Automatic Instrumentation Role Classification and Loop Activation Transcription Many electronic music (EM) genres are composed through the activation of short audio recordings of instruments designed for seamless repetition—or loops. In this work, loops of key structural groups such as bass, percussive or melodic elements are labelled by the role they occupy in a piece of music through the task of automatic instrumentation role classification (AIRC). Such labels assist EM producers in the identification of compatible loops in large unstructured audio databases. While human annotation is often laborious, automatic classification allows for fast and scalable generation of these labels. We experiment with several deeplearning architectures and propose a data augmentation method for improving multi-label representation to balance classes within the Freesound Loop Dataset. To improve the classification accuracy of the architectures, we also evaluate different pooling operations. Results indicate that in combination with the data augmentation and pooling strategies, the proposed system achieves state-of-theart performance for AIRC. Additionally, we demonstrate how our proposed AIRC method is useful for analysing the structure of EM compositions through loop activation transcription.
Download Realistic Gramophone Noise Synthesis Using a Diffusion Model This paper introduces a novel data-driven strategy for synthesizing gramophone noise audio textures. A diffusion probabilistic model is applied to generate highly realistic quasiperiodic noises. The proposed model is designed to generate samples of length equal to one disk revolution, but a method to generate plausible periodic variations between revolutions is also proposed. A guided approach is also applied as a conditioning method, where an audio signal generated with manually-tuned signal processing is refined via reverse diffusion to improve realism. The method has been evaluated in a subjective listening test, in which the participants were often unable to recognize the synthesized signals from the real ones. The synthetic noises produced with the best proposed unconditional method are statistically indistinguishable from real noise recordings. This work shows the potential of diffusion models for highly realistic audio synthesis tasks.
Download Joint Estimation of Fader and Equalizer Gains of DJ Mixers Using Convex Optimization Disc jockeys (DJs) use audio effects to make a smooth transition from one song to another. There have been attempts to computationally analyze the creative process of seamless mixing. However, only a few studies estimated fader or equalizer (EQ) gains controlled by DJs. In this study, we propose a method that jointly estimates time-varying fader and EQ gains so as to reproduce the mix from individual source tracks. The method approximates the equalizer filters with a linear combination of a fixed equalizer filter and a constant gain to convert the joint estimation into a convex optimization problem. For the experiment, we collected a new DJ mix dataset that consists of 5,040 real-world DJ mixes with 50,742 transitions, and evaluated the proposed method with a mix reconstruction error. The result shows that the proposed method estimates the time-varying fader and equalizer gains more accurately than existing methods and simple baselines.
Download A Direct Microdynamics Adjusting Processor with Matching Paradigm and Differentiable Implementation In this paper, we propose a new processor capable of directly changing the microdynamics of an audio signal primarily via a single dedicated user-facing parameter. The novelty of our processor is that it has built into it a measure of relative level, a short-term signal strength measurement which is robust to changes in signal macrodynamics. Consequent dynamic range processing is signal level-independent in its nature, and attempts to directly alter its observed relative level measurements. The inclusion of such a meter within our proposed processor also gives rise to a natural solution to the dynamics matching problem, where we attempt to transfer the microdynamic characteristics of one audio recording to another by means of estimating appropriate settings for the processor. We suggest a means of providing a reasonable initial guess for processor settings, followed by an efficient iterative algorithm to refine upon our estimates. Additionally, we implement the processor as a differentiable recurrent layer and show its effectiveness when wrapped around a gradient descent optimizer within a deep learning framework. Moreover, we illustrate that the proposed processor has more favorable gradient characteristics relative to a conventional dynamic range compressor. Throughout, we consider extensions of the processor, matching algorithm, and differentiable implementation for the multiband case.