Download TU-Note Violin Sample Library – A Database of Violin Sounds with Segmentation Ground Truth
The presented sample library of violin sounds is designed as a tool for the research, development and testing of sound analysis/synthesis algorithms. The library features single sounds which cover the entire frequency range of the instrument in four dynamic levels, two-note sequences for the study of note transitions and vibrato, as well as solo pieces for performance analysis. All parts come with a hand-labeled segmentation ground truth which mark attack, release and transition/transient segments. Additional relevant information on the samples’ properties is provided for single sounds and two-note sequences. Recordings took place in an anechoic chamber with a professional violinist and a recording engineer, using two microphone positions. This document describes the content and the recording setup in detail, alongside basic statistical properties of the data.
Download High frequency magnitude spectrogram reconstruction for music mixtures using convolutional autoencoders
We present a new approach for audio bandwidth extension for music signals using convolutional neural networks (CNNs). Inspired by the concept of inpainting from the field of image processing, we seek to reconstruct the high-frequency region (i.e., above a cutoff frequency) of a time-frequency representation given the observation of a band-limited version. We then invert this reconstructed time-frequency representation using the phase information from the band-limited input to provide an enhanced musical output. We contrast the performance of two musically adapted CNN architectures which are trained separately using the STFT and the invertible CQT. Through our evaluation, we demonstrate that the CQT, with its logarithmic frequency spacing, provides better reconstruction performance as measured by the signal to distortion ratio.
Download A Feedback Canceling Reverberator
A real-time auralization system is described in which room sounds are reverberated and presented over loudspeakers. Room microphones are used to capture room sound sources, with their outputs processed in a canceler to remove the synthetic reverberation also present in the room. Doing so suppresses feedback and gives precise control over the auralization. It also allows freedom of movement and creates a more dynamic acoustic environment for performers or participants in music, theater, gaming, and virtual reality applications. Canceler design methods are discussed, including techniques for handling varying loudspeaker-microphone transfer functions such as would be present in the context of a performance or installation. Tests in a listening room and recital hall show in excess of 20 dB of feedback suppression.