Download Antialiased Black-Box Modeling of Audio Distortion Circuits Using Real Linear Recurrent Units
In this paper, we propose the use of real-valued Linear Recurrent Units (LRUs) for black-box modeling of audio circuits. A network architecture composed of real LRU blocks interleaved with nonlinear processing stages is proposed. Two case studies are presented, a second-order diode clipper and an overdrive distortion pedal. Furthermore, we show how to integrate the antiderivative antialiaisng technique into the proposed method, effectively lowering oversampling requirements. Our experiments show that the proposed method generates models that accurately capture the nonlinear dynamics of the examined devices and are highly efficient, which makes them suitable for real-time operation inside Digital Audio Workstations.
Download Learning Nonlinear Dynamics in Physical Modelling Synthesis Using Neural Ordinary Differential Equations
Modal synthesis methods are a long-standing approach for modelling distributed musical systems. In some cases extensions are possible in order to handle geometric nonlinearities. One such case is the high-amplitude vibration of a string, where geometric nonlinear effects lead to perceptually important effects including pitch glides and a dependence of brightness on striking amplitude. A modal decomposition leads to a coupled nonlinear system of ordinary differential equations. Recent work in applied machine learning approaches (in particular neural ordinary differential equations) has been used to model lumped dynamic systems such as electronic circuits automatically from data. In this work, we examine how modal decomposition can be combined with neural ordinary differential equations for modelling distributed musical systems. The proposed model leverages the analytical solution for linear vibration of system’s modes and employs a neural network to account for nonlinear dynamic behaviour. Physical parameters of a system remain easily accessible after the training without the need for a parameter encoder in the network architecture. As an initial proof of concept, we generate synthetic data for a nonlinear transverse string and show that the model can be trained to reproduce the nonlinear dynamics of the system. Sound examples are presented.
Download Pitch-Conditioned Instrument Sound Synthesis From an Interactive Timbre Latent Space
This paper presents a novel approach to neural instrument sound synthesis using a two-stage semi-supervised learning framework capable of generating pitch-accurate, high-quality music samples from an expressive timbre latent space. Existing approaches that achieve sufficient quality for music production often rely on highdimensional latent representations that are difficult to navigate and provide unintuitive user experiences. We address this limitation through a two-stage training paradigm: first, we train a pitchtimbre disentangled 2D representation of audio samples using a Variational Autoencoder; second, we use this representation as conditioning input for a Transformer-based generative model. The learned 2D latent space serves as an intuitive interface for navigating and exploring the sound landscape. We demonstrate that the proposed method effectively learns a disentangled timbre space, enabling expressive and controllable audio generation with reliable pitch conditioning. Experimental results show the model’s ability to capture subtle variations in timbre while maintaining a high degree of pitch accuracy. The usability of our method is demonstrated in an interactive web application, highlighting its potential as a step towards future music production environments that are both intuitive and creatively empowering: https://pgesam.faresschulz.com/.
Download Audio Processor Parameters: Estimating Distributions Instead of Deterministic Values
Audio effects and sound synthesizers are widely used processors in popular music. Their parameters control the quality of the output sound. Multiple combinations of parameters can lead to the same sound. While recent approaches have been proposed to estimate these parameters given only the output sound, those are deterministic, i.e. they only estimate a single solution among the many possible parameter configurations. In this work, we propose to model the parameters as probability distributions instead of deterministic values. To learn the distributions, we optimize two objectives: (1) we minimize the reconstruction error between the ground truth output sound and the one generated using the estimated parameters, asisit usuallydone, but also(2)we maximize the parameter diversity, using entropy. We evaluate our approach through two numerical audio experiments to show its effectiveness. These results show how our approach effectively outputs multiple combinations of parameters to match one sound.
Download A Statistics-Driven Differentiable Approach for Sound Texture Synthesis and Analysis
In this work, we introduce TexStat, a novel loss function specifically designed for the analysis and synthesis of texture sounds characterized by stochastic structure and perceptual stationarity. Drawing inspiration from the statistical and perceptual framework of McDermott and Simoncelli, TexStat identifies similarities between signals belonging to the same texture category without relying on temporal structure. We also propose using TexStat as a validation metric alongside Frechet Audio Distances (FAD) to evaluate texture sound synthesis models. In addition to TexStat, we present TexEnv, an efficient, lightweight and differentiable texture sound synthesizer that generates audio by imposing amplitude envelopes on filtered noise. We further integrate these components into TexDSP, a DDSP-inspired generative model tailored for texture sounds. Through extensive experiments across various texture sound types, we demonstrate that TexStat is perceptually meaningful, time-invariant, and robust to noise, features that make it effective both as a loss function for generative tasks and as a validation metric. All tools and code are provided as open-source contributions and our PyTorch implementations are efficient, differentiable, and highly configurable, enabling its use in both generative tasks and as a perceptually grounded evaluation metric.
Download Training Neural Models of Nonlinear Multi-Port Elements Within Wave Digital Structures Through Discrete-Time Simulation
Neural networks have been applied within the Wave Digital Filter (WDF) framework as data-driven models for nonlinear multi-port circuit elements. Conventionally, these models are trained on wave variables obtained by sampling the current-voltage characteristic of the considered nonlinear element before being incorporated into the circuit WDF implementation. However, isolating multi-port elements for this process can be challenging, as their nonlinear behavior often depends on dynamic effects that emerge from interactions with the surrounding circuit. In this paper, we propose a novel approach for training neural models of nonlinear multi-port elements directly within a circuit’s Wave Digital (WD) discretetime implementation, relying solely on circuit input-output voltage measurements. Exploiting the differentiability of WD simulations, we embed the neural network into the simulation process and optimize its parameters using gradient-based methods by minimizing a loss function defined over the circuit output voltage. Experimental results demonstrate the effectiveness of the proposed approach in accurately capturing the nonlinear circuit behavior, while preserving the interpretability and modularity of WDFs.
Download Automatic Classification of Chains of Guitar Effects Through Evolutionary Neural Architecture Search
Recent studies on classifying electric guitar effects have achieved high accuracy, particularly with deep learning techniques. However, these studies often rely on simplified datasets consisting mainly of single notes rather than realistic guitar recordings. Moreover, in the specific field of effect chain estimation, the literature tends to rely on large models, making them impractical for real-time or resource-constrained applications. In this work, we recorded realistic guitar performances using four different guitars and created three datasets by applying a chain of five effects with increasing complexity: (1) fixed order and parameters, (2) fixed order with randomly sampled parameters, and (3) random order and parameters. We also propose a novel Neural Architecture Search method aimed at discovering accurate yet compact convolutional neural network models to reduce power and memory consumption. We compared its performance to a basic random search strategy, showing that our custom Neural Architecture Search outperformed random search in identifying models that balance accuracy and complexity. We found that the number of convolutional and pooling layers becomes increasingly important as dataset complexity grows, while dense layers have less impact. Additionally, among the effects, tremolo was identified as the most challenging to classify.
Download Unsupervised Text-to-Sound Mapping via Embedding Space Alignment
This work focuses on developing an artistic tool that performs an unsupervised mapping between text and sound, converting an input text string into a series of sounds from a given sound corpus. With the use of a pre-trained sound embedding model and a separate, pre-trained text embedding model, the goal is to find a mapping between the two feature spaces. Our approach is unsupervised which allows any sound corpus to be used with the system. The tool performs the task of text-to-sound retrieval, creating a soundfile in which each word in the text input is mapped to a single sound in the corpus, and the resulting sounds are concatenated to play sequentially. We experiment with three different mapping methods, and perform quantitative and qualitative evaluations on the outputs. Our results demonstrate the potential of unsupervised methods for creative applications in text-to-sound mapping.
Download Anti-Aliasing of Neural Distortion Effects via Model Fine Tuning
Neural networks have become ubiquitous with guitar distortion effects modelling in recent years. Despite their ability to yield perceptually convincing models, they are susceptible to frequency aliasing when driven by high frequency and high gain inputs. Nonlinear activation functions create both the desired harmonic distortion and unwanted aliasing distortion as the bandwidth of the signal is expanded beyond the Nyquist frequency. Here, we present a method for reducing aliasing in neural models via a teacher-student fine tuning approach, where the teacher is a pretrained model with its weights frozen, and the student is a copy of this with learnable parameters. The student is fine-tuned against an aliasing-free dataset generated by passing sinusoids through the original model and removing non-harmonic components from the output spectra. Our results show that this method significantly suppresses aliasing for both long-short-term-memory networks (LSTM) and temporal convolutional networks (TCN). In the majority of our case studies, the reduction in aliasing was greater than that achieved by two times oversampling. One side-effect of the proposed method is that harmonic distortion components are also affected. This adverse effect was found to be modeldependent, with the LSTM models giving the best balance between anti-aliasing and preserving the perceived similarity to an analog reference device.
Download Antiderivative Antialiasing for Recurrent Neural Networks
Neural networks have become invaluable for general audio processing tasks, such as virtual analog modeling of nonlinear audio equipment. For sequence modeling tasks in particular, recurrent neural networks (RNNs) have gained widespread adoption in recent years. Their general applicability and effectiveness stems partly from their inherent nonlinearity, which makes them prone to aliasing. Recent work has explored mitigating aliasing by oversampling the network—an approach whose effectiveness is directly linked with the incurred computational costs. This work explores an alternative route by extending the antiderivative antialiasing technique to explicit, computable RNNs. Detailed applications to the Gated Recurrent Unit and Long Short-Term Memory cell are shown as case studies. The proposed technique is evaluated on multiple pre-trained guitar amplifier models, assessing its impact on the amount of aliasing and model tonality. The method is shown to reduce the models’ tendency to alias considerably across all considered sample rates while only affecting their tonality moderately, without requiring high oversampling factors. The results of this study can be used to improve sound quality in neural audio processing tasks that employ a suitable class of RNNs. Additional materials are provided in the accompanying webpage.