Download Virtual Bass System With Fuzzy Separation of Tones and Transients A virtual bass system creates an impression of bass perception
in sound systems with weak low-frequency reproduction, which
is typical of small loudspeakers. Virtual bass systems extend the
bandwidth of the low-frequency audio content using either a nonlinear function or a phase vocoder, and add the processed signal
to the reproduced sound. Hybrid systems separate transients and
steady-state sounds, which are processed separately. It is still challenging to reach a good sound quality using a virtual bass system.
This paper proposes a novel method, which separates the tonal,
transient, and noisy parts of the audio signal in a fuzzy way, and
then processes only the transients and tones. Those upper harmonics, which can be detected above the cutoff frequency, are boosted
using timbre-matched weights, but missing upper harmonics are
generated to assist the missing fundamental phenomenon. Listening test results show that the proposed algorithm outperforms selected previous methods in terms of perceived bass sound quality.
The proposed method can enhance the bass sound perception of
small loudspeakers, such as those used in laptop computers and
mobile devices.
Download Optimization of Cascaded Parametric Peak and Shelving Filters With Backpropagation Algorithm Peak and shelving filters are parametric infinite impulse response
filters which are used for amplifying or attenuating a certain frequency band. Shelving filters are parametrized by their cut-off frequency and gain, and peak filters by center frequency, bandwidth
and gain. Such filters can be cascaded in order to perform audio processing tasks like equalization, spectral shaping and modelling of complex transfer functions. Such a filter cascade allows
independent optimization of the mentioned parameters of each filter. For this purpose, a novel approach is proposed for deriving
the necessary local gradients with respect to the control parameters and for applying the instantaneous backpropagation algorithm
to deduce the gradient flow through a cascaded structure. Additionally, the performance of such a filter cascade adapted with the
proposed method, is exhibited for head-related transfer function
modelling, as an example application.
Download Tiv.lib: An Open-Source Library for the Tonal Description of Musical Audio In this paper, we present TIV.lib, an open-source library for the
content-based tonal description of musical audio signals. Its main
novelty relies on the perceptually-inspired Tonal Interval Vector
space based on the Discrete Fourier transform, from which multiple instantaneous and global representations, descriptors and metrics are computed—e.g., harmonic change, dissonance, diatonicity, and musical key. The library is cross-platform, implemented
in Python and the graphical programming language Pure Data, and
can be used in both online and offline scenarios. Of note is its
potential for enhanced Music Information Retrieval, where tonal
descriptors sit at the core of numerous methods and applications.
Download GPGPU Patterns for Serial and Parallel Audio Effects Modern commodity GPUs offer high numerical throughput per
unit of cost, but often sit idle during audio workstation tasks. Various researches in the field have shown that GPUs excel at tasks
such as Finite-Difference Time-Domain simulation and wavefield
synthesis. Concrete implementations of several such projects are
available for use.
Benchmarks and use cases generally concentrate on running
one project on a GPU. Running multiple such projects simultaneously is less common, and reduces throughput. In this work
we list some concerns when running multiple heterogeneous tasks
on the GPU. We apply optimization strategies detailed in developer documentation and commercial CUDA literature, and show
results through the lens of real-time audio tasks. We benchmark
the cases of (i) a homogeneous effect chain made of previously
separate effects, and (ii) a synthesizer with distinct, parallelizable
sound generators.
Download Audio Morphing Using Matrix Decomposition and Optimal Transport This paper presents a system for morphing between audio recordings in a continuous parameter space.
The proposed approach
combines matrix decompositions used for audio source separation with displacement interpolation enabled by 1D optimal transport. By interpolating the spectral components obtained using nonnegative matrix factorization of the source and target signals, the
system allows varying the timbre of a sound in real time, while
maintaining its temporal structure. Using harmonic / percussive
source separation as a pre-processing step, the system affords more
detailed control of the interpolation in perceptually meaningful dimensions.
Download Antiderivative Antialiasing in Nonlinear Wave Digital Filters A major problem in the emulation of discrete-time nonlinear systems, such as those encountered in Virtual Analog modeling, is
aliasing distortion. A trivial approach to reduce aliasing is oversampling. However, this solution may be too computationally demanding for real-time applications. More advanced techniques
to suppress aliased components are arbitrary-order Antiderivative
Antialiasing (ADAA) methods that approximate the reference nonlinear function using a combination of its antiderivatives of different orders. While in its original formulation it is applied only
to memoryless systems, recently, the applicability of first-order
ADAA has been extended to stateful systems employing their statespace description. This paper presents an alternative formulation
that successfully applies arbitrary-order ADAA methods to Wave
Digital Filter models of dynamic circuits with one nonlinear element. It is shown that the proposed approach allows us to design
ADAA models of the nonlinear elements in a fully local and modular fashion, independently of the considered reference circuit. Further peculiar features of the proposed approach, along with two
examples of applications, are discussed.