Download Physical Model Parameter Optimisation for Calibrated Emulation of the Dallas Rangemaster Treble Booster Guitar Pedal In this work we explore optimising parameters of a physical circuit model relative to input/output measurements, using the Dallas Rangemaster Treble Booster as a case study. A hybrid metaheuristic/gradient descent algorithm is implemented, where the initial parameter sets for the optimisation are informed by nominal values from schematics and datasheets. Sensitivity analysis is used to screen parameters, which informs a study of the optimisation algorithm against model complexity by fixing parameters. The results of the optimisation show a significant increase in the accuracy of model behaviour, but also highlight several key issues regarding the recovery of parameters.
Download Rounding Corners with BLAMP The use of the bandlimited ramp (BLAMP) function as an antialiasing tool for audio signals with sharp corners is presented. Discontinuities in the waveform of a signal or its derivatives require infinite bandwidth and are major sources of aliasing in the digital domain. A polynomial correction function is modeled after the ideal BLAMP function. This correction function can be used to treat aliasing caused by sharp edges or corners which translate into discontinuities in the first derivative of a signal. Four examples of cases where these discontinuities appear are discussed: synthesis of triangular waveforms, hard clipping, and half-wave and fullwave rectification. Results obtained show that the BLAMP function is a more efficient tool for alias reduction than oversampling. The polynomial BLAMP can reduce the level of aliasing components by up to 50 dB and improve the overall signal-to-noise ratio by about 20 dB. The proposed method can be incorporated into virtual analog models of musical systems.