Download Modeling and Rendering for Virtual Dropping Sound based on Physical Model of Rigid Body Sound production by means of a physical model for falling objects, which is intended for audio synthesis of immersive contents, is described here. Our approach is a mathematical model to synthesize sound and audio for animation with rigid body simulation. To consider various conditions, a collision model of an object was introduced for vibration and propagation simulation. The generated sound was evaluated by comparing the model output with real sound using numerical criteria and psychoacoustic analysis. Experiments were performed for a variety of objects and floor surfaces, approximately 90% of which were similar to real scenarios. The usefulness of the physical model for audio synthesis in virtual reality was represented in terms of breadth and quality of sound.
Download Sound morphologies due to non-linear interactions : towards a perceptive control of environmental sound-synthesis processes This paper is concerned with perceptual control strategies for physical modeling synthesis of vibrating resonant objects colliding nonlinearly with rigid obstacles. For this purpose, we investigate sound morphologies from samples synthesized using physical modeling for non-linear interactions. As a starting point, we study the effect of linear and non-linear springs and collisions on a single-degreeof-freedom system and on a stiff strings. We then synthesize realistic sounds of a stiff string colliding with a rigid obstacle. Numerical simulations allowed the definition of specific signal patterns characterizing the non linear behavior of the interaction according to the attributes of the obstacle. Finally, a global description of the sound morphology associated with this type of interaction is proposed. This study constitutes a first step towards further perceptual investigations geared towards the development of intuitive synthesis controls.
Download Experimental Study of Guitar Pickup Nonlinearity In this paper, we focus on studying nonlinear behavior of the pickup of an electric guitar and on its modeling. The approach is purely experimental, based on physical assumptions and attempts to find a nonlinear model that, with few parameters, would be able to predict the nonlinear behavior of the pickup. In our experimental setup a piece of string is attached to a shaker and vibrates perpendicularly to the pickup in frequency range between 60 Hz and 400 Hz. The oscillations are controlled by a linearizion feedback to create a purely sinusoidal steady state movement of the string. In the first step, harmonic distortions of three different magnetic pickups (a single-coil, a humbucker, and a rail-pickup) are compared to check if they provide different distortions. In the second step, a static nonlinearity of Paiva’s model is estimated from experimental signals. In the last step, the pickup nonlinearities are compared and an empirical model that fits well all three pickups is proposed.
Download BIVIB: A Multimodal Piano Sample Library Of Binaural Sounds And Keyboard Vibrations An extensive piano sample library consisting of binaural sounds and keyboard vibration signals is made available through an openaccess data repository. Samples were acquired with high-quality audio and vibration measurement equipment on two Yamaha Disklavier pianos (one grand and one upright model) by means of computer-controlled playback of each key at ten different MIDI velocity values. The nominal specifications of the equipment used in the acquisition chain are reported in a companion document, allowing researchers to calculate physical quantities (e.g., acoustic pressure, vibration acceleration) from the recordings. Also, project files are provided for straightforward playback in a free software sampler available for Windows and Mac OS systems. The library is especially suited for acoustic and vibration research on the piano, as well as for research on multimodal interaction with musical instruments.
Download Objective Evaluations of Synthesised Environmental Sounds There are a range of different methods for comparing or measuring the similarity between environmental sound effects. These methods can be used as objective evaluation techniques, to evaluate the effectiveness of a sound synthesis method by assessing the similarity between synthesised sounds and recorded samples. We propose to evaluate a number of different synthesis objective evaluation metrics, by using the different distance metrics as fitness functions within a resynthesis algorithm. A recorded sample is used as a target sound, and the resynthesis is intended to produce a set of synthesis parameters that will synthesise a sound as close to the recorded sample as possible, within the restrictions of the synthesis model. The recorded samples are excerpts of selections from a sound effects library, and the results are evaluated through a subjective listening test. Results show that one of the objective function performs significantly worse than several others. Only one method had a significant and strong correlation between the user perceptual distance and the objective distance. A recommendation of an objective evaluation function for measuring similarity between synthesised environmental sounds is made.
Download Hard real-time onset detection of percussive instruments To date, the most successful onset detectors are those based on frequency representation of the signal. However, for such methods the time between the physical onset and the reported one is unpredictable and may largely vary according to the type of sound being analyzed. Such variability and unpredictability of spectrum-based onset detectors may not be convenient in some real-time applications. This paper proposes a real-time method to improve the temporal accuracy of state-of-the-art onset detectors. The method is grounded on the theory of hard real-time operating systems where the result of a task must be reported at a certain deadline. It consists of the combination of a time-base technique (which has a high degree of accuracy in detecting the physical onset time but is more prone to false positives and false negatives) with a spectrum-based technique (which has a high detection accuracy but a low temporal accuracy). The developed hard real-time onset detector was tested on a dataset of single non-pitched percussive sounds using the high frequency content detector as spectral technique. Experimental validation showed that the proposed approach was effective in better retrieving the physical onset time of about 50% of the hits detected by the spectral technique, with an average improvement of about 3 ms and maximum one of about 12 ms. The results also revealed that the use of a longer deadline may capture better the variability of the spectral technique, but at the cost of a bigger latency.
Download Using Semantic Differential Scales To Assess The Subjective Perception Of Auditory Warning Signals The relationship between physical acoustic parameters and the subjective responses they evoke is important to assess in audio alarm design. While the perception of urgency has been thoroughly investigated, the perception of other variables such as pleasantness, negativeness and irritability has not. To characterize the psychological correlates of variables such as frequency, speed, rhythm and onset, twenty-six participants evaluated fifty-four audio warning signals according to six different semantic differential scales. Regression analysis showed that speed predicted mostly the perception of urgency, preoccupation and negativity; frequency predicted the perception of pleasantness and irritability; and rhythm affected the perception of urgency. No correlation was found with onset and offset times. These findings are important to human-centred design recommendations for auditory warning signals.
Download Resizing Rooms in Convolution, Delay Network, and Modal Reverberators In music recording and virtual reality applications, it is often desirable to control the perceived size of a synthesized acoustic space. Here, we demonstrate a physically informed method for enlarging and shrinking room size. A room size parameter is introduced to modify the time and frequency components of convolution, delay network, and modal artificial reverberation architectures to affect the listener’s sense of the size of the acoustic space taking into account air and materials absorption.
Download Power-balanced Modelling Of Circuits As Skew Gradient Systems This article is concerned with the power-balanced simulation of analog audio circuits, governed by nonlinear differential algebraic equations (DAE). The proposed approach is to combine principles from the port-Hamiltonian and Brayton-Moser formalisms to yield a skew-symmetric gradient system. The practical interest is to provide a solver, using an average discrete gradient, that handles differential and algebraic relations in a unified way, and avoids having to pre-solve the algebraic part. This leads to a structure-preserving method that conserves the power balance and total energy. The proposed formulation is then applied on typical nonlinear audio circuits to study the effectiveness of the method.
Download Contact Sensor Processing for Acoustic Instrument Sensor Matching Using a Modal Architecture This paper proposes a method to filter the output of instrument contact sensors to approximate the response of a well placed microphone. A modal approach is proposed in which mode frequencies and damping ratios are fit to the frequency response of the contact sensor, and the mode gains are then determined for both the contact sensor and the microphone. The mode frequencies and damping ratios are presumed to be associated with the resonances of the instrument. Accordingly, the corresponding contact sensor and microphone mode gains will account for the instrument radiation. The ratios between the contact sensor and microphone gains are then used to create a parallel bank of second-order biquad filters to filter the contact sensor signal to estimate the microphone signal.