Download On the limits of real-time physical modelling synthesis with a modular environment
One goal of physical modelling synthesis is the creation of new virtual instruments. Modular approaches, whereby a set of basic primitive elements can be connected to form a more complex instrument have a long history in audio synthesis. This paper examines such modular methods using finite difference schemes, within the constraints of real-time audio systems. Focusing on consumer hardware and the application of parallel programming techniques for CPU processors, useable combinations of 1D and 2D objects are demonstrated. These can form the basis for a modular synthesis environment that is implemented in a standard plug-in architecture such as an Audio Unit, and controllable via a MIDI keyboard. Optimisation techniques such as vectorization and multi-threading are examined in order to maximise the performance of these computationally demanding systems.
Download Guaranteed-passive simulation of an electro-mechanical piano: a port-Hamiltonian approach
This paper deals with the time-domain simulation of a simplified electro-mechanical piano. The physical model is composed of a hammer (nonlinear component), a cantilever beam (damped linear resonator) and a pickup (nonlinear transducer). In order to ensure stable simulations, a method is proposed, which preserves passivity, namely, the conservative and dissipative properties of the physical system. This issue is addressed in 3 steps. First, each physical component is described by a passive input-output system, which is recast in the port-Hamiltonian framework. In particular, a passive finite dimensional model of the Euler-Bernoulli beam is derived, based on a standard modal decomposition. Second, these components are connected, providing a nonlinear finite dimensional port-Hamiltonian system. Third, a numerical method is proposed, which preserves the power balance and passivity. Numerical results are presented and analyzed.
Download Reverberation still in business: Thickening and Propagating micro-textures in physics-based sound modeling
Artificial reverberation is usually introduced, as a digital audio effect, to give a sense of enclosing architectural space. In this paper we argue about the effectiveness and usefulness of diffusive reverberators in physically-inspired sound synthesis. Examples are given for the synthesis of textural sounds, as they emerge from solid mechanical interactions, as well as from aerodynamic and liquid phenomena.
Download Two polarisation finite difference model of bowed strings with nonlinear contact and friction forces
Recent bowed string sound synthesis has relied on physical modelling techniques; the achievable realism and flexibility of gestural control are appealing, and the heavier computational cost becomes less significant as technology improves. A bowed string is simulated in two polarisations by discretising the partial differential equations governing its behaviour, using the finite difference method; a globally energy balanced scheme is used, as a guarantee of numerical stability under highly nonlinear conditions. In one polarisation, a nonlinear contact model is used for the normal forces exerted by the dynamic bow hair, left hand fingers, and fingerboard. In the other polarisation, a force-velocity friction curve is used for the resulting tangential forces. The scheme update requires the solution of two nonlinear vector equations.Sound examples and video demonstrations are presented.
Download An Algorithm for a Valved Brass Instrument Synthesis Environment using Finite-Difference Time-Domain Methods with Performance Optimisation
This paper presents a physical modelling sound synthesis environment for the production of valved brass instrument sounds. The governing equations of the system are solved using finite-difference time-domain (FDTD) methods and the environment is implemented in the C programming language. Users of the environment can create their own custom instruments and are able to control player parameters such as lip frequency, mouth pressure and valve openings through the use of instrument and score files. The algorithm for sound synthesis is presented in detail along with a discussion of optimisation methods used to reduce run time. Binaries for the environment are available for download online for multiple platforms.
Download Automatic calibration and equalization of a line array system
This paper presents an automated Public Address processing unit, using delay and magnitude response adjustment. The aim is to achieve a flat frequency response and delay adjustment between different physically-placed speakers at the measuring point, which is nowadays usually made manually by the sound technician. The adjustment is obtained using three signal processing operations to the audio signal: time delay adjustment, crossover filtering, and graphic equalization. The automation is in the calculation of different parameter sets: estimation of the time delay, the selection of a suitable crossover frequency, and calculation of the gains for a third-octave graphic equalizer. These automatic methods reduce time and effort in the calibration of line-array PA systems, since only three sine sweeps must be played through the sound system. Measurements have been conducted in an anechoic chamber using a 1:10 scale model of a line array system to verify the functioning of the automatic calibration and equalization methods.
Download Resolving Wave Digital Filters with Multiple/Multiport Nonlinearities
We present a novel framework for developing Wave Digital Filter (WDF) models from reference circuits with multiple/multiport nonlinearities. Collecting all nonlinearities into a vector at the root of a WDF tree bypasses the traditional WDF limitation to a single nonlinearity. The resulting system has a complicated scattering relationship between the nonlinearity ports and the ports of the rest of the (linear) circuit, which can be solved by a Modified-NodalAnalysis-derived method. For computability reasons, the scattering and vector nonlinearity must be solved jointly; we suggest a derivative of the K-method. This novel framework significantly expands the class of appropriate WDF reference circuits. A case study on a clipping stage from the Big Muff Pi distortion pedal involves both a transistor and a diode pair. Since it is intractable with standard WDF methods, its successful simulation demonstrates the usefulness of the novel framework.
Download Approximating non-linear inductors using time-variant linear filters
In this paper we present an approach to modeling the non-linearities of analog electronic components using time-variant digital linear filters. The filter coefficients are computed at every sample depending on the current state of the system. With this technique we are able to accurately model an analog filter including a nonlinear inductor with a saturating core. The value of the magnetic permeability of a magnetic core changes according to its magnetic flux and this, in turn, affects the inductance value. The cutoff frequency of the filter can thus be seen as if it is being modulated by the magnetic flux of the core. In comparison to a reference nonlinear model, the proposed approach has a lower computational cost while providing a reasonably small error.
Download Implementing a Low Latency Parallel Graphic Equalizer with Heterogeneous Computing
This paper describes the implementation of a recently introduced parallel graphic equalizer (PGE) in a heterogeneous way. The control and audio signal processing parts of the PGE are distributed to a PC and to a signal processor, of WaveCore architecture, respectively. This arrangement is particularly suited to the algorithm in question, benefiting from the low-latency characteristics of the audio signal processor as well as general purpose computing power for the more demanding filter coefficient computation. The design is achieved cleanly in a high-level language called Kronos, which we have adapted for the purposes of heterogeneous code generation from a uniform program source.
Download Wave Digital Filter Adaptors for Arbitrary Topologies and Multiport Linear Elements
We present a Modified-Nodal-Analysis-derived method for developing Wave Digital Filter (WDF) adaptors corresponding to complicated (non-series/parallel) topologies that may include multiport linear elements (e.g. controlled sources and transformers). A second method resolves noncomputable (non-tree-like) arrangements of series/parallel adaptors. As with the familiar 3-port series and parallel adaptors, one port of each derived adaptor may be rendered reflection-free, making it acceptable for inclusion in a standard WDF tree. With these techniques, the class of acceptable reference circuits for WDF modeling is greatly expanded. This is demonstrated by case studies on circuits which were previously intractable with WDF methods: the Bassman tone stack and Tube Screamer tone/volume stage.