Download A Physically-Constrained Source Model for FDTD Acoustic Simulation The Finite Difference Time Domain (FDTD) method is becoming increasingly popular for room acoustics simulation. Yet, the literature on grid excitation methods is relatively sparse, and source functions are traditionally implemented in a hard or additive form using arbitrarily-shaped functions which do not necessarily obey the physical laws of sound generation. In this paper we formulate a source function based on a small pulsating sphere model. A physically plausible method to inject a source signal into the grid is derived from first principles, resulting in a source with a nearflat spectrum that does not scatter incoming waves. In the final discrete-time formulation, the source signal is the result of passing a Gaussian pulse through a digital filter simulating the dynamics of the pulsating sphere, hence facilitating a physically correct means to design source functions that generate a prescribed sound field.
Download Real-time Finite Difference Physical Models of Musical Instruments on a Field Programmable Gate Array (FPGA) Real-time sound synthesis of musical instruments based on solving differential equations is of great interest in Musical Acoustics especially in terms of linking geometry features of musical instruments to sound features. A major restriction of accurate physical models is the computational effort. One could state that the calculation cost is directly linked to the geometrical and material accuracy of a physical model and so to the validity of the results. This work presents a methodology for implementing realtime models of whole instrument geometries modelled with the Finite Differences Method (FDM) on a Field Programmable Gate Array (FPGA), a device capable of massively parallel computations. Examples of three real-time musical instrument implementations are given, a Banjo, a Violin and a Chinese Ruan.
Download Timpani Drum Synthesis in 3D on GPGPUs Physical modeling sound synthesis for systems in 3D is a computationally intensive undertaking; the number of degrees of freedom is very large, even for systems and spaces of modest physical dimensions. The recent emergence into the mainstream of highly parallel multicore hardware, such as general purpose graphical processing units (GPGPUs) has opened an avenue of approach to synthesis for such systems in a reasonable amount of time, without severe model simplification. In this context, new programming and algorithm design considerations appear, especially the ease with which a given algorithm may be parallelized. To this end finite difference time domain methods operating over regular grids are explored, with regard to an interesting and non-trivial test problem, that of the timpani drum. The timpani is chosen here because its sounding mechanism relies on the coupling between a 2D resonator and a 3D acoustic space (an internal cavity). It is also of large physical dimensions, and thus simulation is of high computational cost. A timpani model is presented, followed by a brief presentation of finite difference time domain methods, followed by a discussion of parallelization on GPGPU, and simulation results.
Download A pickup model for the Clavinet In this paper recent findings on magnetic transducers are applied to the analysis and modeling of Clavinet pickups. The Clavinet is a stringed instrument having similarities to the electric guitar, it has magnetic single coil pickups used to transduce the string vibration to an electrical quantity. Data gathered during physical inspection and electrical measurements are used to build a complete model which accounts for nonlinearities in the magnetic flux. The model is inserted in a Digital Waveguide (DWG) model for the Clavinet string for its evaluation.
Download Sparse Decomposition, Clustering and Noise for Fire Texture Sound Re-Synthesis In this paper we introduce a framework that represents environmental texture sounds as a linear superposition of independent foreground and background layers that roughly correspond to entities in the physical production of the sound. Sound samples are decomposed into a sparse representation with the matching pursuit algorithm and a dictionary of Daubechies wavelet atoms. An agglomerative clustering procedure groups atoms into short transient molecules. A foreground layer is generated by sampling these sound molecules from a distribution, whose parameters are estimated from the input sample. The residual signal is modelled by an LPC-based source-filter model, synthesizing the background sound layer. The capability of the system is demonstrated with a set of fire sounds.
Download The Helmholtz Resonator Tree The Helmholtz resonator is a prototype of a single acoustic resonance, which can be modeled with a digital resonator. This paper extends this concept by coupling several Helmholtz resonators. The resulting structure is called a Helmholtz resonator tree. The height of the tree is defined by the number of resonator layers that are interconnected. The overall number of resonance frequencies of a Helmholtz resonator tree is the same as its height. A Helmholtz resonator tree can be modeled using wave digital filters (WDF), when electro-acoustic analogies are applied. A WDF tool for implementing Helmholtz resonator trees has been developed in C++. A VST plugin and an Android mobile application were created, which can run short Helmholtz resonator trees in real time. Helmholtz resonator trees can be used for the real-time synthesis of percussive sounds and for realizing novel filtering which can be tuned using intuitive physical parameters.
Download The Wablet: Scanned Synthesis on a Multi-Touch Interface This paper presents research into scanned synthesis on a multitouch screen device. This synthesis technique involves scanning a wavetable that is dynamically evolving in the manner of a massspring network. It is argued that scanned synthesis can provide a good solution to some of the issues in digital musical instrument design, and is particularly well suited to multi-touch screens. In this implementation, vibrating mass-spring networks with a variety of configurations can be created. These can be manipulated by touching, dragging and altering the orientation of the tablet. Arbitrary scanning paths can be drawn onto the structure. Several extensions to the original scanned synthesis technique are proposed, most important of which for multi-touch implementations is the freedom of the masses to move in two dimensions. An analysis of the scanned output in the case of a 1D ideal string model is given, and scanned synthesis is also discussed as being a generalisation of a number of other synthesis methods.
Download Soliton Sonification - Experiments with the Kortweg-deVries Equation Solitons are special solutions of certain nonlinear partial differential equations of mathematical physics. They exhibit properties that are partly similar to the solutions of the linear wave equation and partly similar to the behaviour of colliding particles. Their characteristic features are well-known in the mathematical literature but few closed-form solutions are available. This contribution derives algorithmic structures for the computation of solitons in a dimensionless space-time domain which can be scaled to the audio frequency range. The investigations are confined to first and second order solutions of the Korteweg-de Vries equation. Sound examples show that the effects of wave propagation and soliton interaction can be represented by audible events.
Download A Study on Dynamic Vocal Tract Shaping for Dipthong Simulation Using a 2D Digital Wavegude Mesh This paper presents a study of an articulatory-based speech synthesis based on a 2D-Digital Waveguide Mesh (2D-DWM) to model acoustic wave propagation in the oral tract. It is employed to study the effects of changing oral tract area, and in particular, of moving the articulators during the production of diphthongs. The operation of the synthesizer including details of how diphthongs are produced are discussed. The results support earlier findings that the wall reflection coefficient is inversely proportional to the formant bandwidth.
Download Parametric Spatial Audio Effects Parametric spatial audio coding methods aim to represent efficiently spatial information of recordings with psychoacoustically relevant parameters. In this study, it is presented how these parameters can be manipulated in various ways to achieve a series of spatial audio effects that modify the spatial distribution of a captured or synthesised sound scene, or alter the relation of its diffuse and directional content. Furthermore, it is discussed how the same representation can be used for spatial synthesis of complex sound sources and scenes. Finally, it is argued that the parametric description provides an efficient and natural way for designing spatial effects.