Download Physical Modeling of the Harpsichord Plectrum-String Interaction In this paper, we present a thorough treatment of a harpsichord plectrum-string interaction which allows for large end deflections and both transverse motions of the string. We start from the general equations of motion of a bent beam, and an accurate shape of the plectrum is calculated, agreeing with existing known cantilever beam models when end deflections are assumed small. All the governing forces on the string are considered, and the complete motion of the string up to its release is simulated, allowing for future implementation on physical model sound synthesis of strings. Simulation results agree with what is experienced playing a real harpsichord string.
Download Between Physics and Perception: Signal Models for High Level Audio Processing The use of signal models is one of the key factors enabling us to establish high quality signal transformation algorithms with intuitive high level control parameters. In the present article we will discuss signal models, and the signal transformation algorithms that are based on these models, in relation to the physical properties of the sound source and the properties of human sound perception. We will argue that the implementation of perceptually intuitive high quality signal transformation algorithms requires strong links between the signal models and the perceptually relevant physical properties of the sound source. We will present an overview over the history of 2 sound models that are used for sound transformation and will show how the past and future evolution of sound transformation algorithms is driven by our understanding of the physical world.
Download Physically Based Sound Synthesis and Control of Footsteps Sounds We describe a system to synthesize in real-time footsteps sounds. The sound engine is based on physical models and physically inspired models reproducing the act of walking on several surfaces. To control the real-time engine, three solutions are proposed. The first two solutions are based on floor microphones, while the third one is based on shoes enhanced with sensors. The different solutions proposed are discussed in the paper.
Download Spatial Sound Synthesis for Circular Membranes Physical models of real or virtual instruments are usually only exploited for the generation of wave forms. However, models of twoand three-dimensional vibrating structures contain also information about the sound radiation into the free field. This contribution presents a model for a membrane from which the required driving functions for a multichannel loudspeaker array are derived. The resulting sound field reproduces not only the musical timbre of the sounding body but also its spatial radiation characteristics. It is suitable for real-time synthesis without pre-recorded or presynthesized source tracks.
Download Estimation and Modeling of Pinna-Related Transfer Functions This paper considers the problem of modeling pinna-related transfer functions (PRTFs) for 3-D sound rendering. Following a structural modus operandi, we present an algorithm for the decomposition of PRTFs into ear resonances and frequency notches due to reflections over pinna cavities. Such an approach allows to control the evolution of each physical phenomenon separately through the design of two distinct filter blocks during PRTF synthesis. The resulting model is suitable for future integration into a structural head-related transfer function model, and for parametrization over anthropometrical measurements of a wide range of subjects.
Download Physics-Based and Spike-Guided Tools for Sound Design In this paper we present graphical tools and parameters search algorithms for the timbre space exploration and design of complex sounds generated by physical modeling synthesis. The tools are built around a sparse representation of sounds based on Gammatone functions and provide the designer with both a graphical and an auditory insight. The auditory representation of a number of reference sounds, located as landmarks in a 2D sound design space, provides the designer with an effective aid to direct his search for new sounds. The sonic landmarks can either be synthetic sounds chosen by the user or be automatically derived by using clever parameter search and clustering algorithms. The proposed probabilistic method in this paper makes use of the sparse representations to model the distance between sparsely represented sounds. A subsequent optimization model minimizes those distances to estimate the optimal parameters, which generate the landmark sounds on the given auditory landscape.
Download Passive Admittance Matrix Modeling for Guitar Synthesis In physics-based sound synthesis, it is generally possible to incorporate a mechanical or acoustical immittance (admittance or impedance) in the form of a digital filter. Examples include modeling of the termination of a string or a tube. However, when digital filters are fitted to measured immittance data, care has to be taken that the resulting filter corresponds to a passive mechanical or acoustical system, otherwise the stability of the instrument model is at risk. In previous work, we have presented a simple method for designing and realizing inherently passive scalar admittances, by composing the admittance as a linear combination of positive real (PR) functions with nonnegative weights. In this paper the method is extended to multidimensional admittances (admittance matrices). The admittance matrix is synthesized as a sum of PR scalar transfer functions (second-order filters) multiplied by positive semidefinite matrices. For wave-based modeling, such as digital waveguides (DWGs) or wave digital filters (WDFs), the admittance matrix is converted to a reflectance filter. The filter structure is retained during conversion, resulting in a numerically robust implementation. As an example, a dual-polarization guitar string model based on the DWG approach is connected to the reflectance model parameterized from guitar bridge admittance measurements.
Download Acoustic Modelling of a Convex Pipe Adapted for Digital Waveguide Simulation This work deals with the physical modelling of acoustic pipes for real-time simulation, using the “Digital Waveguide Network” approach and the horn equation. With this approach, a piece of pipe is represented by a two-port system with a loop which involves two delays for wave propagation, and some subsystems without internal delay. A well-known form of this system is the “Kelly-Lochbaum” framework, which allows the reduction of the computation complexity. We focus this work on the simulation of pipes with a convex profile. But, using the “Kelly-Lochbaum” framework with the horn equation, two problems occur: first, even if the outputs are bound, some substates have their values which diverge; second, there is an infinite number of such substates. The system is then unstable and cannot be simulated as such. The solution of this problem is obtained with two steps. First, we show that there is a simple standard form compatible with the “Waveguide” approach, for which there is an infinite number of solutions which preserve the input/output relations. Second, we look for one solution which guarantees the stability of the system and which makes easier the approximation in order to get a low-cost simulation.
Download Digital Simulation of “Brassiness” and Amplitude-Dependent Propagation Speed in Wind Instruments The speed of sound in air increases with pressure, causing pressure peaks to travel faster than troughs, and leading to a sharpening of the propagating pressure waveform. Here, this nonlinear effect is explored, and its application to brass instrument synthesis and its use as an audio effect are described. Acoustic measurements on tubes and brass instruments are presented showing significant spectral enrichment, sometimes referred to as “brassiness.” The effect may be implemented as an amplitudedependent delay, distributed across a cascade of incremental delays. A bidirectional waveguide, having a pressure-dependent delay, appropriate for musical instrument synthesis, is presented. A computationally efficient lumped-element processor is also presented. Example brass instrument recordings, originally played softly, are spectrally enriched or “brassified” to simulate a fortissimo playing level.
Download Structurally Passive Scattering Element for Modelling Guitar Pluck Action In this paper we propose new models for the plucking interaction of the player with the string for use with digital waveguide simulation of guitar. Unlike the previously presented models, the new models are based on structurally passive scattering junctions, which have the main advantage of being properly scaled for use in fixed-point waveguide implementations and of guaranteeing stability independently of the plucking excitation. In a first model we start from the Cuzzucoli-Lombardo equations [1], within the Evangelista-Eckerholm [2] propagation formulation, in order to derive the passive scattering junction by means of bilinear transformation. In a second model we start from equations properly modeling the finger compliance by means of a spring. In a third model we formalize the interaction in terms of driving impedances. The model is also extended using nonlinear (feathering) compliance models.