Download Numerical Calculation of Modal Spring Reverb Parameters
In the design of real-time spring reverberation algorithms, a modal architecture offers several advantages, including computational efficiency and parametric control flexibility. Due to the complex, highly dispersive behavior of helical springs, computing physically accurate parameters for such a model presents specific challenges. In this paper these are addressed by applying an implicit higher-order-in-space finite difference scheme to a two-variable model of helical spring dynamics. A novel numerical boundary treatment is presented, which utilises multiple centered boundary expressions of different stencil width. The resulting scheme is unconditionally stable, and as such allows adjusting the numerical parameters independently of each other and of the physical parameters. The dispersion relation of the scheme is shown to be accurate in the audio range only for very high orders of accuracy in combination with a small temporal and spatial step. The frequency, amplitude, and decay rate of the system modes are extracted from a diagonalised form of this numerical model. After removing all modes with frequencies outside the audio range and applying a modal amplitude correction to compensate for omitting the magnetic transducers, a light-weight modal reverb algorithm is obtained. Comparison with a measured impulse response shows a reasonably good match across a wide frequency range in terms of echo density, decay characteristics, and diffusive nature.
Download Bistable Digital Audio Effect
A mechanical system is said to be bistable when its moving parts can rest at two equilibrium positions. The aim of this work is to model the vibration behaviour of a bistable system and use it to create a sound effect, taking advantage of the nonlinearities that characterize such systems. The velocity signal of the bistable system excited by an audio signal is the output of the digital effect. The latter is coded in C++ language and compiled into VST3 format that can be run as an audio plugin within most of the commercial digital audio workstation software in the market and as a standalone application. A Web Audio API demonstration is also available online as a support material.