Download Numerical Simulation of Spring Reverberation Virtual analog modeling of spring reverberation presents a challenging problem to the algorithm designer, regardless of the particular strategy employed. The difficulties lie in the behaviour of the helical spring, which, due to its inherent curvature, shows characteristics of both coherent and dispersive wave propagation. Though it is possible to emulate such effects in an efficient manner using audio signal processing constructs such as delay lines (for coherent wave propagation) and chains of allpass filters (for dispersive wave propagation), another approach is to make use of direct numerical simulation techniques, such as the finite difference time domain method (FDTD) in order to solve the equations of motion directly. Such an approach, though more computationally intensive, allows a closer link with the underlying model system— and yet, there are severe numerical difficulties associated with such designs, and in particular anomalous numerical dispersion, requiring some care at the design stage. In this paper, a complete model of helical spring vibration is presented; dispersion analysis from an audio perspective allows for model simplification. A detailed description of novel FDTD designs follows, with special attention is paid to issues such as numerical stability, loss modeling, numerical boundary conditions, and computational complexity. Simulation results are presented.
Download Physically Informed Synthesis of Jackhammer Tool Impact Sounds This paper introduces a sound synthesis method for jackhammer tool impact sounds. The model is based on parallel waveguide models for longitudinal and transversal vibrations. The longitudinal sounds are produced using a comb filter that is tuned to match the longitudinal resonances of a steel bar. The dispersive transversal vibrations are produced using a comb filter which has a cascade of first-order allpass filters and time-varying feedback coefficient. The synthesis model is driven by an input generator unit that produces a train of Hann pulses at predetermined time-intervals. Each pulse has its amplitude modified slightly by a random process. For increased realism each impact is followed by a number of repetitive impacts with variable amplitude and time difference according to the initial pulse. The sound output of the model is realized by mixing both transversal and longitudinal signals and the effect is finalized by an equalizer.
Download A 3D Multi-Plate Environment for Sound Synthesis In this paper, a physics-based sound synthesis environment is presented which is composed of several plates, under nonlinear conditions, coupled with the surrounding acoustic field. Equations governing the behaviour of the system are implemented numerically using finite difference time domain methods. The number of plates, their position relative to a 3D computational enclosure and their physical properties can all be specified by the user; simple control parameters allow the musician/composer to play the virtual instrument. Spatialised sound outputs may be sampled from the simulated acoustic field using several channels simultaneously. Implementation details and control strategies for this instrument will be discussed; simulations results and sound examples will be presented.
Download A Modeller-Simulator for Instrumental Playing of Virtual Musical Instruments This paper presents a musician-oriented modelling and simulation environment for designing physically modelled virtual instruments and interacting with them via a high performance haptic device. In particular, our system allows restoring the physical coupling between the user and the manipulated virtual instrument, a key factor for expressive playing of traditional acoustical instruments that is absent in the vast majority of computer-based musical systems. We first analyse the various uses of haptic devices in Computer Music, and introduce the various technologies involved in our system. We then present the modeller and simulation environments, and examples of musical virtual instruments created with this new environment.