Download Simplifying Antiderivative Antialiasing with Lookup Table Integration Antiderivative Antialiasing (ADAA), has become a pivotal method
for reducing aliasing when dealing with nonlinear function at audio rate. However, its implementation requires analytical computation of the antiderivative of the nonlinear function, which in practical cases can be challenging without a symbolic solver. Moreover, when the nonlinear function is given by measurements it
must be approximated to get a symbolic description. In this paper, we propose a simple approach to ADAA for practical applications that employs numerical integration of lookup tables (LUTs)
to approximate the antiderivative. This method eliminates the need
for closed-form solutions, streamlining the ADAA implementation
process in industrial applications. We analyze the trade-offs of this
approach, highlighting its computational efficiency and ease of implementation while discussing the potential impact of numerical
integration errors on aliasing performance. Experiments are conducted with static nonlinearities (tanh, a simple wavefolder and
the Buchla 259 wavefolding circuit) and a stateful nonlinear system (the diode clipper).
Download Antiderivative Antialiasing for Recurrent Neural Networks Neural networks have become invaluable for general audio processing tasks, such as virtual analog modeling of nonlinear audio equipment.
For sequence modeling tasks in particular, recurrent neural networks (RNNs) have gained widespread adoption in recent years. Their general applicability and effectiveness
stems partly from their inherent nonlinearity, which makes them
prone to aliasing. Recent work has explored mitigating aliasing
by oversampling the network—an approach whose effectiveness is
directly linked with the incurred computational costs. This work
explores an alternative route by extending the antiderivative antialiasing technique to explicit, computable RNNs. Detailed applications to the Gated Recurrent Unit and Long Short-Term Memory cell are shown as case studies. The proposed technique is evaluated
on multiple pre-trained guitar amplifier models, assessing its impact on the amount of aliasing and model tonality. The method is
shown to reduce the models’ tendency to alias considerably across
all considered sample rates while only affecting their tonality moderately, without requiring high oversampling factors. The results
of this study can be used to improve sound quality in neural audio
processing tasks that employ a suitable class of RNNs. Additional
materials are provided in the accompanying webpage.
Download Anti-Aliasing of Neural Distortion Effects via Model Fine Tuning Neural networks have become ubiquitous with guitar distortion
effects modelling in recent years. Despite their ability to yield
perceptually convincing models, they are susceptible to frequency
aliasing when driven by high frequency and high gain inputs.
Nonlinear activation functions create both the desired harmonic
distortion and unwanted aliasing distortion as the bandwidth of
the signal is expanded beyond the Nyquist frequency. Here, we
present a method for reducing aliasing in neural models via a
teacher-student fine tuning approach, where the teacher is a pretrained model with its weights frozen, and the student is a copy of
this with learnable parameters. The student is fine-tuned against
an aliasing-free dataset generated by passing sinusoids through
the original model and removing non-harmonic components from
the output spectra.
Our results show that this method significantly suppresses aliasing for both long-short-term-memory networks (LSTM) and temporal convolutional networks (TCN). In the
majority of our case studies, the reduction in aliasing was greater
than that achieved by two times oversampling. One side-effect
of the proposed method is that harmonic distortion components
are also affected.
This adverse effect was found to be modeldependent, with the LSTM models giving the best balance between
anti-aliasing and preserving the perceived similarity to an analog
reference device.
Download Antialiased Black-Box Modeling of Audio Distortion Circuits Using Real Linear Recurrent Units In this paper, we propose the use of real-valued Linear Recurrent
Units (LRUs) for black-box modeling of audio circuits. A network architecture composed of real LRU blocks interleaved with
nonlinear processing stages is proposed.
Two case studies are
presented, a second-order diode clipper and an overdrive distortion pedal. Furthermore, we show how to integrate the antiderivative antialiaisng technique into the proposed method, effectively
lowering oversampling requirements. Our experiments show that
the proposed method generates models that accurately capture the
nonlinear dynamics of the examined devices and are highly efficient, which makes them suitable for real-time operation inside
Digital Audio Workstations.
Download Real-Time Virtual Analog Modelling of Diode-Based VCAs Some early analog voltage-controlled amplifiers (VCAs) utilized
semiconductor diodes as a variable-gain element. Diode-based
VCAs exhibit a unique sound quality, with distortion dependent
both on signal level and gain control. In this work, we examine the
behavior of a simplified circuit for a diode-based VCA and propose
a nonlinear, explicit, stateless digital model. This approach avoids
traditional iterative algorithms, which can be computationally intensive. The resulting digital model retains the sonic characteristics
of the analog model and is suitable for real-time simulation. We
present an analysis of the gain characteristics and harmonic distortion produced by this model, as well as practical guidance for
implementation. We apply this approach to a set of alternative
analog topologies and introduce a family of digital VCA models
based on fixed nonlinearities with variable operating points.