Download Sample Rate Independent Recurrent Neural Networks for Audio Effects Processing In recent years, machine learning approaches to modelling guitar amplifiers and effects pedals have been widely investigated and have become standard practice in some consumer products. In particular, recurrent neural networks (RNNs) are a popular choice for modelling non-linear devices such as vacuum tube amplifiers and distortion circuitry. One limitation of such models is that they are trained on audio at a specific sample rate and therefore give unreliable results when operating at another rate. Here, we investigate several methods of modifying RNN structures to make them approximately sample rate independent, with a focus on oversampling. In the case of integer oversampling, we demonstrate that a previously proposed delay-based approach provides high fidelity sample rate conversion whilst additionally reducing aliasing. For non-integer sample rate adjustment, we propose two novel methods and show that one of these, based on cubic Lagrange interpolation of a delay-line, provides a significant improvement over existing methods. To our knowledge, this work provides the first in-depth study into this problem.
Download Improving Unsupervised Clean-to-Rendered Guitar Tone Transformation Using GANs and Integrated Unaligned Clean Data Recent years have seen increasing interest in applying deep learning methods to the modeling of guitar amplifiers or effect pedals. Existing methods are mainly based on the supervised approach, requiring temporally-aligned data pairs of unprocessed and rendered audio. However, this approach does not scale well, due to the complicated process involved in creating the data pairs. A very recent work done by Wright et al. has explored the potential of leveraging unpaired data for training, using a generative adversarial network (GAN)-based framework. This paper extends their work by using more advanced discriminators in the GAN, and using more unpaired data for training. Specifically, drawing inspiration from recent advancements in neural vocoders, we employ in our GANbased model for guitar amplifier modeling two sets of discriminators, one based on multi-scale discriminator (MSD) and the other multi-period discriminator (MPD). Moreover, we experiment with adding unprocessed audio signals that do not have the corresponding rendered audio of a target tone to the training data, to see how much the GAN model benefits from the unpaired data. Our experiments show that the proposed two extensions contribute to the modeling of both low-gain and high-gain guitar amplifiers.
Download Hyper Recurrent Neural Network: Condition Mechanisms for Black-Box Audio Effect Modeling Recurrent neural networks (RNNs) have demonstrated impressive results for virtual analog modeling of audio effects. These networks process time-domain audio signals using a series of matrix multiplication and nonlinear activation functions to emulate the behavior of the target device accurately. To additionally model the effect of the knobs for an RNN-based model, existing approaches integrate control parameters by concatenating them channel-wisely with some intermediate representation of the input signal. While this method is parameter-efficient, there is room to further improve the quality of generated audio because the concatenation-based conditioning method has limited capacity in modulating signals. In this paper, we propose three novel conditioning mechanisms for RNNs, tailored for black-box virtual analog modeling. These advanced conditioning mechanisms modulate the model based on control parameters, yielding superior results to existing RNN- and CNN-based architectures across various evaluation metrics.
Download Balancing Error and Latency of Black-Box Models for Audio Effects Using Hardware-Aware Neural Architecture Search In this paper, we address automating and systematizing the process of finding black-box models for virtual analogue audio effects with an optimal balance between error and latency. We introduce a multi-objective optimization approach based on hardware-aware neural architecture search which allows specifying the optimization balance of model error and latency according to the requirements of the application. By using a regularized evolutionary algorithm, it is able to navigate through a huge search space systematically. Additionally, we propose a search space for modelling non-linear dynamic audio effects consisting of over 41 trillion different WaveNet-style architectures. We evaluate its performance and usefulness by yielding highly effective architectures, either up to 18× faster or with a test loss of up to 56% less than the best performing models of the related work, while still showing a favourable trade-off. We can conclude that hardware-aware neural architecture search is a valuable tool that can help researchers and engineers developing virtual analogue models by automating the architecture design and saving time by avoiding manual search and evaluation through trial-and-error.
Download Interpolation Filters for Antiderivative Antialiasing Aliasing is an inherent problem in nonlinear digital audio processing which results in undesirable audible artefacts. Antiderivative antialiasing has proved to be an effective approach to mitigate aliasing distortion, and is based on continuous-time convolution of a linearly interpolated distorted signal with antialiasing filter kernels. However, the performance of this method is determined by the properties of interpolation filter. In this work, cubic interpolation kernels for antiderivative antialiasing are considered. For memoryless nonlinearities, aliasing reduction is improved employing cubic interpolation. For stateful systems, numerical simulation and stability analysis with respect to different interpolation kernels remain in favour of linear interpolation.
Download Wave Digital Model of the MXR Phase 90 Based on a Time-Varying Resistor Approximation of JFET Elements Virtual Analog (VA) modeling is the practice of digitally emulating analog audio gear. Over the past few years, with the purpose of recreating the alleged distinctive sound of audio equipment and musicians, many different guitar pedals have been emulated by means of the VA paradigm but little attention has been given to phasers. Phasers process the spectrum of the input signal with time-varying notches by means of shifting stages typically realized with a network of transistors, whose nonlinear equations are, in general, demanding to be solved. In this paper, we take as a reference the famous MXR Phase 90 guitar pedal, and we propose an efficient time-varying model of its Junction Field-Effect Transistors (JFETs) based on a channel resistance approximation. We then employ such a model in the Wave Digital domain to emulate in real-time the guitar pedal, obtaining an implementation characterized by low computational cost and good accuracy.
Download Guitar Tone Stack Modeling with a Neural State-Space Filter In this work, we present a data-driven approach to modeling tone stack circuits in guitar amplifiers and distortion pedals. To this aim, the proposed modeling approach uses a feedforward fully connected neural network to predict the parameters of a coupledform state-space filter, ensuring the numerical stability of the resulting time-varying system. The neural network is conditioned on the tone controls of the target tone stack and is optimized jointly with the coupled-form state-space filter to match the target frequency response. To assess the proposed approach, we model three popular tone stack schematics with both matched-order and overparameterized filters and conduct an objective comparison with well-established approaches that use cascaded biquad filters. Results from the conducted experiments demonstrate improved accuracy of the proposed modeling approach, especially in the case of over-parameterized state-space filters while guaranteeing numerical stability. Our method can be deployed, after training, in realtime audio processors.
Download Evaluating Neural Networks Architectures for Spring Reverb Modelling Reverberation is a key element in spatial audio perception, historically achieved with the use of analogue devices, such as plate and spring reverb, and in the last decades with digital signal processing techniques that have allowed different approaches for Virtual Analogue Modelling (VAM). The electromechanical functioning of the spring reverb makes it a nonlinear system that is difficult to fully emulate in the digital domain with white-box modelling techniques. In this study, we compare five different neural network architectures, including convolutional and recurrent models, to assess their effectiveness in replicating the characteristics of this audio effect. The evaluation is conducted on two datasets at sampling rates of 16 kHz and 48 kHz. This paper specifically focuses on neural audio architectures that offer parametric control, aiming to advance the boundaries of current black-box modelling techniques in the domain of spring reverberation.
Download Neural Audio Processing on Android Phones This study investigates the potential of real-time inference of neural audio effects on Android smartphones, marking an initial step towards bridging the gap in neural audio processing for mobile devices. Focusing exclusively on processing rather than synthesis, we explore the performance of three open-source neural models across five Android phones released between 2014 and 2022, showcasing varied capabilities due to their generational differences. Through comparative analysis utilizing two C++ inference engines (ONNX Runtime and RTNeural), we aim to evaluate the computational efficiency and timing performance of these models, considering the varying computational loads and the hardware specifics of each device. Our work contributes insights into the feasibility of implementing neural audio processing in real-time on mobile platforms, highlighting challenges and opportunities for future advancements in this rapidly evolving field.