Download Block-oriented Gray Box Modeling of Guitar Amplifiers In this work, analog guitar amplifiers are modeled with an automated procedure using iterative optimization techniques. The digital model is divided into functional blocks, consisting of lineartime-invariant (LTI) filters and nonlinear blocks with nonlinear mapping functions and memory. The model is adapted in several steps. First the filters are measured and afterwards the parameters of the digital model are adapted for different input signals to minimize the error between itself and the analog reference system. This is done for a small number of analog reference devices. Afterwards the adapted model is evaluated with objective scores and a listening test is performed to rate the quality of the adapted models.
Download Modeling Circuits with Operational Transconductance Amplifiers Using Wave Digital Filters In this paper, we show how to expand the class of audio circuits that can be modeled using Wave Digital Filters (WDFs) to those involving operational transconductance amplifiers (OTAs). Two types of behavioral OTA models are presented and both are shown to be compatible with the WDF approach to circuit modeling. As a case study, an envelope filter guitar effect based around OTAs is modeled using WDFs. The modeling results are shown to be accurate when to compared to state of the art circuit simulation methods.
Download Network Variable Preserving Step-size Control in Wave Digital Filters In this paper a new technique is introduced that allows for the variable step-size simulation of wave digital filters. The technique is based on the preservation of the underlying network variables which prevents fluctuation in the stored energy in reactive network elements when the step-size is changed. This method allows for the step-size variation of wave digital filters discretized with any passive discretization technique and works with both linear and nonlinear reference circuits. The usefulness of the technique with regards to audio circuit simulation is demonstrated via the case study of a relaxation oscillator where it is shown how the variable step-size technique can be used to mitigate frequency error that would otherwise occur with a fixed step-size simulation. Additionally, an example of how aliasing suppression techniques can be combined with physical modeling is given with an example of the polyBLEP antialiasing technique being applied to the output voltage signal of the relaxation oscillator.
Download Generalizing Root Variable Choice in Wave Digital Filters with Grouped Nonlinearities Previous grouped-nonlinearity formulations for Wave Digital Filter (WDF) modeling of nonlinear audio circuits assumed that nonlinear (NL) devices with memoryless voltage–current characteristics were modeled as voltage-controlled current sources (VCCSs). These formulations cannot accommodate nonlinear devices whose equations cannot be written as NL VCCSs, and they cannot accommodate circuits with cutsets composed entirely of current sources (including NL VCCSs). In this paper we generalize independent and dependent variable choice at the root of WDF trees to accommodate both these cases, and review two graph theorems for avoiding forbidden cutsets and loops in general.
Download Automatic Decomposition of Non-linear Equation Systems in Audio Effect Circuit Simulation In the digital simulation of non-linear audio effect circuits, the arising non-linear equation system generally poses the main challenge for a computationally cheap implementation. As the computational complexity grows super-linearly with the number of equations, it is beneficial to decompose the equation system into several smaller systems, if possible. In this paper we therefore develop an approach to determine such a decomposition automatically. We limit ourselves to cases where an exact decomposition is possible, however, and do not consider approximate decompositions.