Download Real-Time Guitar Tube Amplifier Simulation using an Approximation of Differential Equations
Digital simulation of guitar tube amplifiers is still an opened topic. The efficient implementation of several parts of the guitar amplifier is presented in this paper. This implementation is based on the pre-computation of the solution of the nonlinear differential system and further approximation of the solution. It reduces the computational complexity while the accuracy is comparable with the numerical solution. The method is used for simulation of different parts of the guitar amplifier, namely a triode preamp stage, a phase splitter and a push-pull amplifier. Finally, the results and comparison with other methods are discussed.
Download Real-Time Simulation of a Guitar Power Amplifier
This paper deals with the real time simulation of a class A single ended guitar power amplifier. Power tubes and triode models are compared, based on Norman Koren’s work. Beam tetrodes and pentodes characteristics are discussed, and displayed as Norman Koren’s model parameters. A simple output transformer model is considered, with its parameters calculated from datasheets specifications. Then, the circuit is modeled by a nonlinear differential algebraic system, with extended state-space representations. Standard numerical schemes yield efficient and stable simulations of the stage, and are implemented as VST plug-ins.
Download Discretization of Parametric Analog Circuits for Real-Time Simulations
The real-time simulation of analog circuits by digital systems becomes problematic when parametric components like potentiometers are involved. In this case the coefficients defining the digital system will change and have to be adapted. One common solution is to recalculate the coefficients in real-time, a possibly computationally expensive operation. With a view to the simulation using state-space representations, two parametric subcircuits found in typical guitar amplifiers are analyzed, namely the tone stack, a linear passive network used as simple equalizer and a distorting preamplifier, limiting the signal amplitude with LEDs. Solutions using trapezoidal rule discretization are presented and discussed. It is shown, that the computational costs in case of recalculation of the coefficients are reduced compared to the related DK-method, due to minimized matrix formulations. The simulation results are compared to reference data and show good match.
Download Automatic Segmentation of the Temporal Evolution of Isolated Acoustic Musical Instruments Sounds Using Spectro-Temporal Cues
The automatic segmentation of isolated musical instrument sounds according to the temporal evolution is not a trivial task. It requires a model capable of capturing regions such as the attack, decay, sustain and release accurately for many types of instruments with different modes of excitation. The traditional ADSR amplitude envelope model does not apply universally to acoustic musical instrument sounds with different excitation methods because it uses strictly amplitude information and supposes all sounds manifest the same temporal evolution. We present an automatic segmentation technique based on a more realistic model of the temporal evolution of many types of acoustic musical instruments that incorporates both temporal and spectrotemporal cues. The method allows a robust and more perceptually relevant automatic segmentation of the isolated sounds of many musical instruments that fit the model.