Download A Measurement Technique for Highly Nonlinear Transfer Functions
This paper presents a new method to estimate nonlinear transfer functions of tube amplifiers or distortion effect stages. A special test signal and a sorting algorithm allow the calculation of the nonlinear transfer functions. PSPICE simulations of a tube amplifier as well as real-time measurements of a tube amplifier with a high quality 24bit/96kHz sound card will be presented.
Download Physical Constraints for the Control of a Physical Model of a Trumpet
In this paper, the control of a physical model of a trumpet is studied. Although this model clearly describes the mechanical and acoustical phenomena that are perceptually relevant, additional constraints must be imposed on the control parameters. In contrast with the model where the tube length can be varied continuously, only seven different tube lengths can be obtained with a real instrument. By studying the physical model and its implementation, different relationships between the control parameters and signal characteristics are identified. These relationships are then used to obtain the best set of tube lengths with respect to a given tuning frequency.
Download The Sounds of the Avian Syrinx - are they Really Flute-Like?
This research presents a model of the avian vocal tract, implemented using classical waveguide synthesis and numerical methods. The vocal organ of the songbird, the syrinx, has a unique topography of acoustic tubes (a trachea with a bifurcation at its base) making it a rather unique subject for waveguide synthesis. In the upper region of the two bifid bronchi lies a nonlinear vibrating membrane – the primary resonator in sound production. Unlike most reed musical instruments, the more significant displacement of the membrane is perpendicular to the directions of airflow, due to the Bernoulli effect. The model of the membrane displacement, and the resulting pressure through the constriction created by the membrane motion, is therefore derived beginning with the Bernoulli equation.
Download Optimizing Digital Musical Effect Implementation for Multiple Processor DSP Systems
In the area of digital musical effect implementation, attention has lately been focused on computer workstations designed for digital processing of sound, which perform all operations with audio signals in real time. They are in fact a combination of powerful computer program and hardware cards with digital signal processors. Thanks to the power enhancement of personal computer core, performing these operations in the CPU is currently possible. However, in most cases, digital signal processors are still used for these purposes because digital musical effect modelling is more effective and more precise with the digital signal processor. In addition to this, processing in digital signal processor saves the CPU computing power for other functions.
Download Gestural Strategies for Specific Filtering Processes
The gestural control of filters implies the definition of these filters and the way to activate them with gesture. We give here the example of several real “virtual instruments” which rely on this gestural control. This way we show that music making is different from algorithm producing and that a good gestural control may substitute to, or at least complement, a complex scheme using digital audio effects in real time implementations [1].
Download Doppler Simulation and the Leslie
An efficient algorithm for simulating the Doppler effect using interpolating and de-interpolating delay lines is described. The Doppler simulator is used to simulate a rotating horn to achieve the Leslie effect. Measurements of a horn from a real Leslie are used to calibrate angle-dependent digital filters which simulate the changing, angle-dependent, frequency response of the rotating horn.