Download On Vibrato and Frequency (De)Modulation in Musical Sounds
Vibrato is an important characteristic in human musical performance and is often uniquely characteristic to a player and/or a particular instrument. This work is motivated by the assumption (often made in the source separation literature) that vibrato aids in the identification of multiple sound sources playing in unison. It follows that its removal, the focus herein, may contribute to a more blended combination. In signals, vibrato is often modeled as an oscillatory deviation from a center pitch/frequency that presents in the sound as phase/frequency modulation. While vibrato implementation using a time-varying delay line is well known, using a delay line for its removal is less so. In this work we focus on (de)modulation of vibrato in a signal by first showing the relationship between modulation and corresponding demodulation delay functions and then suggest a solution for increased vibrato removal in the latter by ensuring sideband attenuation below the threshold of audibility. Two known methods for estimating the instantaneous frequency/phase are used to construct delay functions from both contrived and musical examples so that vibrato removal may be evaluated.
Download Audio Effect Chain Estimation and Dry Signal Recovery From Multi-Effect-Processed Musical Signals
In this paper we propose a method that can address a novel task, audio effect (AFX) chain estimation and dry signal recovery. AFXs are indispensable in modern sound design workflows. Sound engineers often cascade different AFXs (as an AFX chain) to achieve their desired soundscapes. Given a multi-AFX-applied solo instrument performance (wet signal), our method can automatically estimate the applied AFX chain and recover its unprocessed dry signal, while previous research only addresses one of them. The estimated chain is useful for novice engineers in learning practical usages of AFXs, and the recovered signal can be reused with a different AFX chain. To solve this task, we first develop a deep neural network model that estimates the last-applied AFX and undoes its AFX at a time. We then iteratively apply the same model to estimate the AFX chain and eventually recover the dry signal from the wet signal. Our experiments on guitar phrase recordings with various AFX chains demonstrate the validity of our method for both the AFX-chain estimation and dry signal recovery. We also confirm that the input wet signal can be reproduced by applying the estimated AFX chain to the recovered dry signal.
Download CONMOD: Controllable Neural Frame-Based Modulation Effects
Deep learning models have seen widespread use in modelling LFOdriven audio effects, such as phaser and flanger. Although existing neural architectures exhibit high-quality emulation of individual effects, they do not possess the capability to manipulate the output via control parameters. To address this issue, we introduce Controllable Neural Frame-based Modulation Effects (CONMOD), a single black-box model which emulates various LFOdriven effects in a frame-wise manner, offering control over LFO frequency and feedback parameters. Additionally, the model is capable of learning the continuous embedding space of two distinct phaser effects, enabling us to steer between effects and achieve creative outputs. Our model outperforms previous work while possessing both controllability and universality, presenting opportunities to enhance creativity in modern LFO-driven audio effects. Additional demo of our model is available in the accompanying website.1
Download Differentiable All-Pole Filters for Time-Varying Audio Systems
Infinite impulse response filters are an essential building block of many time-varying audio systems, such as audio effects and synthesisers. However, their recursive structure impedes end-toend training of these systems using automatic differentiation. Although non-recursive filter approximations like frequency sampling and frame-based processing have been proposed and widely used in previous works, they cannot accurately reflect the gradient of the original system. We alleviate this difficulty by reexpressing a time-varying all-pole filter to backpropagate the gradients through itself, so the filter implementation is not bound to the technical limitations of automatic differentiation frameworks. This implementation can be employed within audio systems containing filters with poles for efficient gradient evaluation. We demonstrate its training efficiency and expressive capabilities for modelling real-world dynamic audio systems on a phaser, time-varying subtractive synthesiser, and feed-forward compressor. We make our code and audio samples available and provide the trained audio effect and synth models in a VST plugin1 .
Download NBU: Neural Binaural Upmixing of Stereo Content
While immersive music productions have become popular in recent years, music content produced during the last decades has been predominantly mixed for stereo. This paper presents a datadriven approach to automatic binaural upmixing of stereo music. The network architecture HDemucs, previously utilized for both source separation and binauralization, is leveraged for an endto-end approach to binaural upmixing. We employ two distinct datasets, demonstrating that while custom-designed training data enhances the accuracy of spatial positioning, the use of professionally mixed music yields superior spatialization. The trained networks show a capacity to process multiple simultaneous sources individually and add valid binaural cues, effectively positioning sources with an average azimuthal error of less than 11.3 ◦ . A listening test with binaural experts shows it outperforms digital signal processing-based approaches to binauralization of stereo content in terms of spaciousness while preserving audio quality.