Download Continuous State Modeling for Statistical Spectral Synthesis Continuous State Markovian Spectral Modeling is a novel approach for parametric synthesis of spectral modeling parameters, based on the sines plus noise paradigm. The method aims specifically at capturing shimmer and jitter - micro-fluctuations in the partials’ frequency and amplitude trajectories, which are essential for the timbre of musical instruments. It allows for parametric control over the timbral qualities, while removing the need for the more computationally expensive and restrictive process of the discrete state space modeling method. A qualitative comparison between an original violin sound and a re-synthesis shows the ability of the algorithm to reproduce the micro-fluctuations, considering their stochastic and spectral properties.
Download A Virtual Instrument for Ifft-Based Additive Synthesis in the Ambisonics Domain Spatial additive synthesis can be efficiently implemented by applying the inverse Fourier transform to create the individual channels of Ambisonics signals. In the presented work, this approach has been implemented as an audio plugin, allowing the generation and control of basic waveforms and their spatial attributes in a typical DAW-based music production context. Triggered envelopes and low frequency oscillators can be mapped to the spectral shape, source position and source width of the resulting sounds. A technical evaluation shows the computational advantages of the proposed method for additive sounds with high numbers of partials and different Ambisonics orders. The results of a user study indicate the potential of the developed plugin for manipulating the perceived position, source width and timbre coloration.