Download A Frequency Domain Adaptive Algorithm for Wave Separation
We propose a frequency domain adaptive algorithm for wave separation in wind instruments. Forward and backward travelling waves are obtained from the signals acquired by two microphones placed along the tube, while the separation filter is adapted from the information given by a third microphone. Working in the frequency domain has a series of advantages, among which are the ease of design of the propagation filter and its differentiation with respect to its parameters. Although the adaptive algorithm was developed as a first step for the estimation of playing parameters in wind instruments it can also be used, without any modifications, for other applications such as in-air direction of arrival (DOA) estimation. Preliminary results on these applications will also be presented.
Download Improving the robustness of the iterative solver in state-space modelling of guitar distortion circuitry
Iterative solvers are required for the discrete-time simulation of nonlinear behaviour in analogue distortion circuits. Unfortunately, these methods are often computationally too expensive for realtime simulation. Two methods are presented which attempt to reduce the expense of iterative solvers. This is achieved by applying information that is derived from the specific form of the nonlinearity. The approach is first explained through the modelling of an asymmetrical diode clipper, and further exemplified by application to the Dallas Rangemaster Treble Booster guitar pedal, which provides an initial perspective of the performance on systems with multiple nonlinearities.
Download Modal Spring Reverb Based on Discretisation of the Thin Helical Spring Model
The distributed nature of coupling in helical springs presents specific challenges in obtaining efficient computational structures for accurate spring reverb simulation. For direct simulation approaches, such as finite-difference methods, this is typically manifested in significant numerical dispersion within the hearing range. Building on a recent study of a simpler spring model, this paper presents an alternative discretisation approach that employs higher-order spatial approximations and applies centred stencils at the boundaries to address the underlying linear-system eigenvalue problem. Temporal discretisation is then applied to the resultant uncoupled mode system, rendering an efficient and flexible modal reverb structure. Through dispersion analysis it is shown that numerical dispersion errors can be kept extremely small across the hearing range for a relatively low number of system nodes. Analysis of an impulse response simulated using model parameters calculated from a measured spring geometry confirms that the model captures an enhanced set of spring characteristics.
Download On the numerical solution of the 2D wave equation with compact FDTD schemes
This paper discusses compact-stencil nite difference time domain (FDTD) schemes for approximating the 2D wave equation in the context of digital audio. Stability, accuracy, and efciency are investigated and new ways of viewing and interpreting the results are discussed. It is shown that if a tight accuracy constraint is applied, implicit schemes outperform explicit schemes. The paper also discusses the relevance to digital waveguide mesh modelling, and highlights the optimally efcient explicit scheme.