Download Sitrano: A Matlab App for Sines-Transients-Noise Decomposition of Audio Signals Decomposition of sounds into their sinusoidal, transient, and noise
components is an active research topic and a widely-used tool in
audio processing. Multiple solutions have been proposed in recent
years, using time–frequency representations to identify either horizontal and vertical structures or orientations and anisotropy in the
spectrogram of the sound. In this paper, we present SiTraNo: an
easy-to-use MATLAB application with a graphic user interface for
audio decomposition that enables visualization and access to the
sinusoidal, transient, and noise classes, individually. This application allows the user to choose between different well-known separation methods to analyze an input sound file, to instantaneously
control and remix its spectral components, and to visually check
the quality of the separation, before producing the desired output
file. The visualization of common artifacts, such as birdies and
dropouts, is demonstrated. This application promotes experimenting with the sound decomposition process by observing the effect
of variations for each spectral component on the original sound
and by comparing different methods against each other, evaluating
the separation quality both audibly and visually. SiTraNo and its
source code are available on a companion website and repository.
Download One-to-Many Conversion for Percussive Samples A filtering algorithm for generating subtle random variations in
sampled sounds is proposed. Using only one recording for impact
sound effects or drum machine sounds results in unrealistic repetitiveness during consecutive playback. This paper studies spectral
variations in repeated knocking sounds and in three drum sounds:
a hihat, a snare, and a tomtom. The proposed method uses a short
pseudo-random velvet-noise filter and a low-shelf filter to produce
timbral variations targeted at appropriate spectral regions, yielding potentially an endless number of new realistic versions of a
single percussive sampled sound.
The realism of the resulting
processed sounds is studied in a listening test. The results show
that the sound quality obtained with the proposed algorithm is at
least as good as that of a previous method while using 77% fewer
computational operations. The algorithm is widely applicable to
computer-generated music and game audio.
Download Exposure Bias and State Matching in Recurrent Neural Network Virtual Analog Models Virtual analog (VA) modeling using neural networks (NNs) has
great potential for rapidly producing high-fidelity models. Recurrent neural networks (RNNs) are especially appealing for VA due
to their connection with discrete nodal analysis. Furthermore, VA
models based on NNs can be trained efficiently by directly exposing them to the circuit states in a gray-box fashion. However,
exposure to ground truth information during training can leave the
models susceptible to error accumulation in a free-running mode,
also known as “exposure bias” in machine learning literature. This
paper presents a unified framework for treating the previously
proposed state trajectory network (STN) and gated recurrent unit
(GRU) networks as special cases of discrete nodal analysis. We
propose a novel circuit state-matching mechanism for the GRU
and experimentally compare the previously mentioned networks
for their performance in state matching, during training, and in exposure bias, during inference. Experimental results from modeling
a diode clipper show that all the tested models exhibit some exposure bias, which can be mitigated by truncated backpropagation
through time. Furthermore, the proposed state matching mechanism improves the GRU modeling performance of an overdrive
pedal and a phaser pedal, especially in the presence of external
modulation, apparent in a phaser circuit.
Download Realistic Gramophone Noise Synthesis Using a Diffusion Model This paper introduces a novel data-driven strategy for synthesizing gramophone noise audio textures. A diffusion probabilistic model is applied to generate highly realistic quasiperiodic noises. The proposed model is designed to generate samples of length equal to one disk revolution, but a method to generate plausible periodic variations between revolutions is also proposed. A guided approach is also applied as a conditioning method, where an audio signal generated with manually-tuned signal processing is refined via reverse diffusion to improve realism. The method has been evaluated in a subjective listening test, in which the participants were often unable to recognize the synthesized signals from the real ones. The synthetic noises produced with the best proposed unconditional method are statistically indistinguishable from real noise recordings. This work shows the potential of diffusion models for highly realistic audio synthesis tasks.
Download Binaural Dark-Velvet-Noise Reverberator Binaural late-reverberation modeling necessitates the synthesis of frequency-dependent inter-aural coherence, a crucial aspect of spatial auditory perception. Prior studies have explored methodologies such as filtering and cross-mixing two incoherent late reverberation impulse responses to emulate the coherence observed in measured binaural late reverberation. In this study, we introduce two variants of the binaural dark-velvet-noise reverberator. The first one uses cross-mixing of two incoherent dark-velvet-noise sequences that can be generated efficiently. The second variant is a novel time-domain jitter-based approach. The methods’ accuracies are assessed through objective and subjective evaluations, revealing that both methods yield comparable performance and clear improvements over using incoherent sequences. Moreover, the advantages of the jitter-based approach over cross-mixing are highlighted by introducing a parametric width control, based on the jitter-distribution width, into the binaural dark velvet noise reverberator. The jitter-based approach can also introduce timedependent coherence modifications without additional computational cost.
Download Virtual Analog Modeling of Distortion Circuits Using Neural Ordinary Differential Equations Recent research in deep learning has shown that neural networks can learn differential equations governing dynamical systems. In this paper, we adapt this concept to Virtual Analog (VA) modeling to learn the ordinary differential equations (ODEs) governing the first-order and the second-order diode clipper. The proposed models achieve performance comparable to state-of-the-art recurrent neural networks (RNNs) albeit using fewer parameters. We show that this approach does not require oversampling and allows to increase the sampling rate after the training has completed, which results in increased accuracy. Using a sophisticated numerical solver allows to increase the accuracy at the cost of slower processing. ODEs learned this way do not require closed forms but are still physically interpretable.
Download Sample Rate Independent Recurrent Neural Networks for Audio Effects Processing In recent years, machine learning approaches to modelling guitar amplifiers and effects pedals have been widely investigated and have become standard practice in some consumer products. In particular, recurrent neural networks (RNNs) are a popular choice for modelling non-linear devices such as vacuum tube amplifiers and distortion circuitry. One limitation of such models is that they are trained on audio at a specific sample rate and therefore give unreliable results when operating at another rate. Here, we investigate several methods of modifying RNN structures to make them approximately sample rate independent, with a focus on oversampling. In the case of integer oversampling, we demonstrate that a previously proposed delay-based approach provides high fidelity sample rate conversion whilst additionally reducing aliasing. For non-integer sample rate adjustment, we propose two novel methods and show that one of these, based on cubic Lagrange interpolation of a delay-line, provides a significant improvement over existing methods. To our knowledge, this work provides the first in-depth study into this problem.
Download Guitar Tone Stack Modeling with a Neural State-Space Filter In this work, we present a data-driven approach to modeling tone stack circuits in guitar amplifiers and distortion pedals. To this aim, the proposed modeling approach uses a feedforward fully connected neural network to predict the parameters of a coupledform state-space filter, ensuring the numerical stability of the resulting time-varying system. The neural network is conditioned on the tone controls of the target tone stack and is optimized jointly with the coupled-form state-space filter to match the target frequency response. To assess the proposed approach, we model three popular tone stack schematics with both matched-order and overparameterized filters and conduct an objective comparison with well-established approaches that use cascaded biquad filters. Results from the conducted experiments demonstrate improved accuracy of the proposed modeling approach, especially in the case of over-parameterized state-space filters while guaranteeing numerical stability. Our method can be deployed, after training, in realtime audio processors.
Download How Smooth Do You Think I Am: An Analysis on the Frequency-Dependent Temporal Roughness of Velvet Noise Velvet noise is a sparse pseudo-random signal, with applications in late reverberation modeling, decorrelation, speech generation, and extending signals. The temporal roughness of broadband velvet noise has been studied earlier. However, the frequency-dependency of the temporal roughness has little previous research. This paper explores which combinative qualities such as pulse density, filter type, and filter shape contribute to frequency-dependent temporal roughness. An adaptive perceptual test was conducted to find minimal densities of smooth noise at octave bands as well as corresponding lowpass bands. The results showed that the cutoff frequency of a lowpass filter as well as the center frequency of an octave filter is correlated with the perceived minimal density of smooth noise. When the lowpass filter with the lowest cutoff frequency, 125 Hz, was applied, the filtered velvet noise sounded smooth at an average of 725 pulses/s and an average of 401 pulses/s for octave filtered noise at a center frequency of 125 Hz. For the broadband velvet noise, the minimal density of smoothness was found to be at an average of 1554 pulses/s. The results of this paper are applicable in designing velvet-noise-based artificial reverberation with minimal pulse density.
Download Unsupervised Estimation of Nonlinear Audio Effects: Comparing Diffusion-Based and Adversarial Approaches Accurately estimating nonlinear audio effects without access to
paired input-output signals remains a challenging problem. This
work studies unsupervised probabilistic approaches for solving this
task. We introduce a method, novel for this application, based
on diffusion generative models for blind system identification, enabling the estimation of unknown nonlinear effects using blackand gray-box models. This study compares this method with a
previously proposed adversarial approach, analyzing the performance of both methods under different parameterizations of the
effect operator and varying lengths of available effected recordings. Through experiments on guitar distortion effects, we show
that the diffusion-based approach provides more stable results and
is less sensitive to data availability, while the adversarial approach
is superior at estimating more pronounced distortion effects. Our
findings contribute to the robust unsupervised blind estimation of
audio effects, demonstrating the potential of diffusion models for
system identification in music technology.