Download MorphDrive: Latent Conditioning for Cross-Circuit Effect Modeling and a Parametric Audio Dataset of Analog Overdrive Pedals In this paper, we present an approach to the neural modeling of
overdrive guitar pedals with conditioning from a cross-circuit and
cross-setting latent space. The resulting network models the behavior of multiple overdrive pedals across different settings, offering continuous morphing between real configurations and hybrid
behaviors. Compact conditioning spaces are obtained through unsupervised training of a variational autoencoder with adversarial
training, resulting in accurate reconstruction performance across
different sets of pedals. We then compare three Hyper-Recurrent
architectures for processing, including dynamic and static HyperRNNs, and a smaller model for real-time processing. Additionally,
we present pOD-set, a new open dataset including recordings of
27 analog overdrive pedals, each with 36 gain and tone parameter combinations totaling over 97 hours of recordings. Precise parameter setting was achieved through a custom-deployed recording
robot.
Download Automatic Classification of Chains of Guitar Effects Through Evolutionary Neural Architecture Search Recent studies on classifying electric guitar effects have achieved
high accuracy, particularly with deep learning techniques. However, these studies often rely on simplified datasets consisting
mainly of single notes rather than realistic guitar recordings.
Moreover, in the specific field of effect chain estimation, the literature tends to rely on large models, making them impractical for
real-time or resource-constrained applications. In this work, we
recorded realistic guitar performances using four different guitars
and created three datasets by applying a chain of five effects with
increasing complexity: (1) fixed order and parameters, (2) fixed order with randomly sampled parameters, and (3) random order and
parameters. We also propose a novel Neural Architecture Search
method aimed at discovering accurate yet compact convolutional
neural network models to reduce power and memory consumption.
We compared its performance to a basic random search strategy,
showing that our custom Neural Architecture Search outperformed
random search in identifying models that balance accuracy and
complexity. We found that the number of convolutional and pooling layers becomes increasingly important as dataset complexity
grows, while dense layers have less impact. Additionally, among
the effects, tremolo was identified as the most challenging to classify.