Download Distortion Recovery: A Two-Stage Method for Guitar Effect Removal Removing audio effects from electric guitar recordings makes it easier for post-production and sound editing. An audio distortion recovery model not only improves the clarity of the guitar sounds but also opens up new opportunities for creative adjustments in mixing and mastering. While progress have been made in creating such models, previous efforts have largely focused on synthetic distortions that may be too simplistic to accurately capture the complexities seen in real-world recordings. In this paper, we tackle the task by using a dataset of guitar recordings rendered with commercial-grade audio effect VST plugins. Moreover, we introduce a novel two-stage methodology for audio distortion recovery. The idea is to firstly process the audio signal in the Mel-spectrogram domain in the first stage, and then use a neural vocoder to generate the pristine original guitar sound from the processed Mel-spectrogram in the second stage. We report a set of experiments demonstrating the effectiveness of our approach over existing methods, through both subjective and objective evaluation metrics.
Download Separation of musical notes with highly overlapping partials using phase and temporal constrained complex matric factorization In note separation of polyphonic music, how to separate the overlapping partials is an important and difficult problem. Fifths and octaves, as the most challenging ones, are, however, usually seen in many cases. Non-negative matrix factorization (NMF) employs the constraints of energy and harmonic ratio to tackle this problem. Recently, complex matrix factorization (CMF) is proposed by combining the phase information in source separation problem. However, temporal magnitude modulation is still serious in the situation of fifths and octaves, when CMF is applied. In this work, we investigate the temporal smoothness model based on CMF approach. The temporal ac-tivation coefficient of a preceding note is constrained when the succeeding notes appear. Compare to the unconstraint CMF, the magnitude modulation are greatly reduced in our computer simulation. Performance indices including sourceto-interference ratio (SIR), source-to-artifacts ratio (SAR), sourceto-distortion ratio (SDR), as well as modulation error ratio (MER) are given.