Download RIR2FDN: An Improved Room Impulse Response Analysis and Synthesis This paper seeks to improve the state-of-the-art in delay-networkbased analysis-synthesis of measured room impulse responses (RIRs). We propose an informed method incorporating improved energy decay estimation and synthesis with an optimized feedback delay network. The performance of the presented method is compared against an end-to-end deep-learning approach. A formal listening test was conducted where participants assessed the similarity of reverberated material across seven distinct RIRs and three different sound sources. The results reveal that the performance of these methods is influenced by both the excitation sounds and the reverberation conditions. Nonetheless, the proposed method consistently demonstrates higher similarity ratings compared to the end-to-end approach across most conditions. However, achieving an indistinguishable synthesis of measured RIRs remains a persistent challenge, underscoring the complexity of this problem. Overall, this work helps improve the sound quality of analysis-based artificial reverberation.
Download Differentiable Feedback Delay Network for Colorless Reverberation Artificial reverberation algorithms often suffer from spectral coloration, usually in the form of metallic ringing, which impairs the perceived quality of sound. This paper proposes a method to reduce the coloration in the feedback delay network (FDN), a popular artificial reverberation algorithm. An optimization framework is employed entailing a differentiable FDN to learn a set of parameters decreasing coloration. The optimization objective is to minimize the spectral loss to obtain a flat magnitude response, with an additional temporal loss term to control the sparseness of the impulse response. The objective evaluation of the method shows a favorable narrower distribution of modal excitation while retaining the impulse response density. The subjective evaluation demonstrates that the proposed method lowers perceptual coloration of late reverberation, and also shows that the suggested optimization improves sound quality for small FDN sizes. The method proposed in this work constitutes an improvement in the design of accurate and high-quality artificial reverberation, simultaneously offering computational savings.