Download Automatic Target Mixing using Least-Squares Optimization of Gains and Equalization Settings
The proposed automatic target mixing algorithm determines the gains and the equalization settings for the mixing of a multi-track recording using a least-squares optimization. These parameters are estimated using a single channel target mix, that is a signal which contains the same audio tracks as the multi-track recording, but that has been previously mixed using some unknown settings. Several tests have been done in order to evaluate the performances of two different approaches to the optimization, namely the sub-band estimator and the FIR filters estimator. The results show that, using the latter technique, the proposed algorithm is able to retrieve the parameters originally applied to the target mix. This achievement can be useful for remastering applications, where both the original recording sessions and the final mix are available, but there is the need to retrieve the mixing parameters originally applied to the various audio tracks.
Download Differentiable All-Pole Filters for Time-Varying Audio Systems
Infinite impulse response filters are an essential building block of many time-varying audio systems, such as audio effects and synthesisers. However, their recursive structure impedes end-toend training of these systems using automatic differentiation. Although non-recursive filter approximations like frequency sampling and frame-based processing have been proposed and widely used in previous works, they cannot accurately reflect the gradient of the original system. We alleviate this difficulty by reexpressing a time-varying all-pole filter to backpropagate the gradients through itself, so the filter implementation is not bound to the technical limitations of automatic differentiation frameworks. This implementation can be employed within audio systems containing filters with poles for efficient gradient evaluation. We demonstrate its training efficiency and expressive capabilities for modelling real-world dynamic audio systems on a phaser, time-varying subtractive synthesiser, and feed-forward compressor. We make our code and audio samples available and provide the trained audio effect and synth models in a VST plugin1 .
Download Simulating Microphone Bleed and Tom-tom Resonance in Multisampled Drum Workstations
In recent years multisampled drum workstations have become increasingly popular. They offer an alternative to recording a full drum kit if a producer, engineer or amateur lacks the equipment, money, space or knowledge to produce a quality recording. These drum workstations strive for realism, often recording up to a hundred different velocity hits of the same drum, including recordings from all microphones for each drum hit and including bleed between these microphones. This paper describes research undertaken to investigate if it is possible to simulate the snare and kick drum bleed into the tom-tom microphones and the subsequent resonance of the tom-tom that is caused, with the aim of reducing the amount of audio data that needs to be stored. A listening test was performed asking participants to identify the real recording from a simulation. The results were not statistically significant to reject the hypothesis that subjects were unable to distinguish the difference between the real and simulated recordings. This suggests listeners were unable to identify the real recording in the majority of cases.