Download Between Physics and Perception: Signal Models for High Level Audio Processing
The use of signal models is one of the key factors enabling us to establish high quality signal transformation algorithms with intuitive high level control parameters. In the present article we will discuss signal models, and the signal transformation algorithms that are based on these models, in relation to the physical properties of the sound source and the properties of human sound perception. We will argue that the implementation of perceptually intuitive high quality signal transformation algorithms requires strong links between the signal models and the perceptually relevant physical properties of the sound source. We will present an overview over the history of 2 sound models that are used for sound transformation and will show how the past and future evolution of sound transformation algorithms is driven by our understanding of the physical world.
Download A New Score Function for Joint Evaluation of Multiple F0 Hypotheses
This article is concerned with the estimation of the fundamental frequencies of the quasiharmonic sources in polyphonic signals for the case that the number of sources is known. We propose a new method for jointly evaluating multiple F0 hypotheses based on three physical principles: harmonicity, spectral smoothness and synchronous amplitude evolution within a single source. Given the observed spectrum a set of F0 candidates is listed and for any hypothetical combination among the candidates the corresponding hypothetical partial sequences are derived. Hypothetical partial sequences are then evaluated using a score function formulating the guiding principles in mathematical forms. The algorithm has been tested on a large collection of arti cially mixed polyphonic samples and the encouraging results demonstrate the competitive performance of the proposed method.
Download A Two Level Montage Approach to Sound Texture Synthesis with Treatment of Unique Events
In this paper a novel algorithm for sound texture synthesis is presented. The goal of this algorithm is to produce new examples of a given sampled texture, the synthesized textures being of any desired duration. The algorithm is based on a montage approach to synthesis in that the synthesized texture is made up of pieces of the original sample concatenated together in a new sequence. This montage approach preserves both the high level evolution and low level detail of the original texture. Included in the algorithm is a measure of uniqueness, which can be used for the identification of regions in the original texture containing events that are atypical of the texture, and hence avoid their unnatural repetition at the synthesis stage.
Download Extended Source-Filter Model for Harmonic Instruments for Expressive Control of Sound Synthesis and Transformation
In this paper we present a revised and improved version of a recently proposed extended source-filter model for sound synthesis, transformation and hybridization of harmonic instruments. This extension focuses mainly on the application for impulsively excited instruments like piano or guitar, but also improves synthesis results for continuously driven instruments including their hybrids. This technique comprises an extensive analysis of an instruments sound database, followed by the estimation of a generalized instrument model reflecting timbre variations according to selected control parameters. Such an instrument model allows for natural sounding transformations and expressive control of instrument sounds regarding its control parameters.