Download A Segmental Spectro-Temporal Model of Musical Timbre We propose a new statistical model of musical timbre that handles the different segments of the temporal envelope (attack, sustain and release) separately in order to account for their different spectral and temporal behaviors. The model is based on a reduced-dimensionality representation of the spectro-temporal envelope. Temporal coefficients corresponding to the attack and release segments are subjected to explicit trajectory modeling based on a non-stationary Gaussian Process. Coefficients corresponding to the sustain phase are modeled as a multivariate Gaussian. A compound similarity measure associated with the segmental model is proposed and successfully tested in instrument classification experiments. Apart from its use in a statistical framework, the modeling method allows intuitive and informative visualizations of the characteristics of musical timbre.
Download Extended Source-Filter Model for Harmonic Instruments for Expressive Control of Sound Synthesis and Transformation In this paper we present a revised and improved version of a recently proposed extended source-filter model for sound synthesis, transformation and hybridization of harmonic instruments. This extension focuses mainly on the application for impulsively excited instruments like piano or guitar, but also improves synthesis results for continuously driven instruments including their hybrids. This technique comprises an extensive analysis of an instruments sound database, followed by the estimation of a generalized instrument model reflecting timbre variations according to selected control parameters. Such an instrument model allows for natural sounding transformations and expressive control of instrument sounds regarding its control parameters.