Download Audio Processor Parameters: Estimating Distributions Instead of Deterministic Values Audio effects and sound synthesizers are widely used processors
in popular music.
Their parameters control the quality of the
output sound. Multiple combinations of parameters can lead to
the same sound.
While recent approaches have been proposed
to estimate these parameters given only the output sound, those
are deterministic, i.e. they only estimate a single solution among
the many possible parameter configurations.
In this work, we
propose to model the parameters as probability distributions instead
of deterministic values. To learn the distributions, we optimize
two objectives: (1) we minimize the reconstruction error between
the ground truth output sound and the one generated using the
estimated parameters, asisit usuallydone, but also(2)we maximize
the parameter diversity, using entropy. We evaluate our approach
through two numerical audio experiments to show its effectiveness.
These results show how our approach effectively outputs multiple
combinations of parameters to match one sound.
Download Vivos Voco: A survey of recent research on voice transformations at IRCAM IRCAM has a long experience in analysis, synthesis and transformation of voice. Natural voice transformations are of great interest for many applications and can be combine with text-to-speech system, leading to a powerful creation tool. We present research conducted at IRCAM on voice transformations for the last few years. Transformations can be achieved in a global way by modifying pitch, spectral envelope, durations etc. While it sacrifices the possibility to attain a specific target voice, the approach allows the production of new voices of a high degree of naturalness with different gender and age, modified vocal quality, or another speech style. These transformations can be applied in realtime using ircamTools TR A X.Transformation can also be done in a more specific way in order to transform a voice towards the voice of a target speaker. Finally, we present some recent research on the transformation of expressivity.