Download Reducing the Aliasing of Nonlinear Waveshaping Using Continuous-Time Convolution
Nonlinear waveshaping is a common technique in musical signal processing, both in a static memoryless context and within feedback systems. Such waveshaping is usually applied directly to a sampled signal, generating harmonics that exceed the Nyquist frequency and cause aliasing distortion. This problem is traditionally tackled by oversampling the system. In this paper, we present a novel method for reducing this aliasing by constructing a continuous-time approximation of the discrete-time signal, applying the nonlinearity to it, and filtering in continuous-time using analytically applied convolution. The presented technique markedly reduces aliasing distortion, especially in combination with low order oversampling. The approach is also extended to allow it to be used within a feedback system.
Download Efficient Anti-aliasing of a Complex Polygonal Oscillator
Digital oscillators with discontinuities in their time domain signal derivative suffer from an increased noise floor due to the unbound spectrum generated by these discontinuities. Common antialiasing schemes that aim to suppress the unwanted fold-back of higher frequencies can become computationally expensive, as they often involve repeated sample rate manipulation and filtering. In this paper, the authors present an effective approach to applying the four-point polyBLAMP method to the continuous order polygonal oscillator by deriving a closed form expression for the derivative jumps which is only valid at the discontinuities. Compared to the traditional oversampling approach, the resulting SNR improvements of 20 dB correspond to 2–4× oversampling at 25× lower computational complexity, all while offering a higher suppression of aliasing artifacts in the audible range.
Download Virtual Analog Buchla 259 Wavefolder
An antialiased digital model of the wavefolding circuit inside the Buchla 259 Complex Waveform Generator is presented. Wavefolding is a type of nonlinear waveshaping used to generate complex harmonically-rich sounds from simple periodic waveforms. Unlike other analog wavefolder designs, Buchla’s design features five op-amp-based folding stages arranged in parallel alongside a direct signal path. The nonlinear behavior of the system is accurately modeled in the digital domain using memoryless mappings of the input–output voltage relationships inside the circuit. We pay special attention to suppressing the aliasing introduced by the nonlinear frequency-expanding behavior of the wavefolder. For this, we propose using the bandlimited ramp (BLAMP) method with eight times oversampling. Results obtained are validated against SPICE simulations and a highly oversampled digital model. The proposed virtual analog wavefolder retains the salient features of the original circuit and is applicable to digital sound synthesis.