Download Spring Reverberation: A Physical Perspective
Spring-based artificial reverberation was one of the earliest attempts at compact replication of room-like reverberation for studio use. The popularity and unique sound of this effect have given it a status and desirability apart from its original use. Standard methods for modeling analog audio effects are not well suited to modeling spring reverberation, due to the complex and dispersive nature of its mechanical vibration. Therefore, new methods must be examined. A typical impulse responses of a spring used for reverberation is examined, and important perceptual parameters identified. Mathematical models of spring vibration are considered, with the purpose of drawing conclusions relevant to their application in an audio environment. These models are used to produce new results relevant to the design of digital systems for the emulation of spring reverberation units. The numerical solution of these models via the finite difference method is considered. A set of measurements of two typical spring reverberation units are presented.
Download Physically Informed Synthesis of Jackhammer Tool Impact Sounds
This paper introduces a sound synthesis method for jackhammer tool impact sounds. The model is based on parallel waveguide models for longitudinal and transversal vibrations. The longitudinal sounds are produced using a comb filter that is tuned to match the longitudinal resonances of a steel bar. The dispersive transversal vibrations are produced using a comb filter which has a cascade of first-order allpass filters and time-varying feedback coefficient. The synthesis model is driven by an input generator unit that produces a train of Hann pulses at predetermined time-intervals. Each pulse has its amplitude modified slightly by a random process. For increased realism each impact is followed by a number of repetitive impacts with variable amplitude and time difference according to the initial pulse. The sound output of the model is realized by mixing both transversal and longitudinal signals and the effect is finalized by an equalizer.
Download Modeling Methods for the Highly Dispersive Slinky Spring: A Novel Musical Toy
The ’Slinky’ spring is a popular and beloved toy for many children. Like its smaller relatives, used in spring reverberation units, it can produce interesting sonic behaviors. We explore the behavior of the ’Slinky’ spring via measurement, and discover that its sonic characteristics are notably different to those of smaller springs. We discuss methods of modeling the behavior of a Slinky via the use of finite-difference techniques and digital waveguides. We then apply these models in different structures to build a number of interesting tools for computer-based music production.
Download A Digital Model of the Buchla Lowpass-Gate
In recent years there has been an increasing amount of interest in the style of synthesis implemented by Don Buchla in his instrument designs from the early 1960s until the present. A key part of the Buchla synthesizer and its characteristic quality is the ’lowpass gate’ filter and the acoustic-like plucked sounds that it provides. In this work we examine the circuit of the low-pass gate, both its audio and control portions. We propose a number of digital models of these circuits, as well as a model of the photoresistive optoisolator or ’vactrol’ used within them. In the case of the audio path of the device, we pay particular attention to maintaining desirable behavior under time-variation of its parameters. The resulting digital model retains much of the interesting character of the analog system, and is computationally cheap enough to use within a standard computer-music setup.
Download Modelling of nonlinear state-space systems using a deep neural network
In this paper we present a new method for the pseudo black-box modelling of general continuous-time state-space systems using a discrete-time state-space system with an embedded deep neural network. Examples are given of how this method can be applied to a number of common nonlinear electronic circuits used in music technology, namely two kinds of diode-based guitar distortion circuits and the lowpass filter of the Korg MS-20 synthesizer.
Download Barberpole Phasing and Flanging Illusions
Various ways to implement infinitely rising or falling spectral notches, also known as the barberpole phaser and flanging illusions, are described and studied. The first method is inspired by the Shepard-Risset illusion, and is based on a series of several cascaded notch filters moving in frequency one octave apart from each other. The second method, called a synchronized dual flanger, realizes the desired effect in an innovative and economic way using two cascaded time-varying comb filters and cross-fading between them. The third method is based on the use of single-sideband modulation, also known as frequency shifting. The proposed techniques effectively reproduce the illusion of endlessly moving spectral notches, particularly at slow modulation speeds and for input signals with a rich frequency spectrum. These effects can be programmed in real time and implemented as part of a digital audio processing system.
Download Automated Calibration of a Parametric Spring Reverb Model
The calibration of a digital spring reverberator model is crucial for the authenticity and quality of the sound produced by the model. In this paper, an automated calibration of the model parameters is proposed, by analysing the spectrogram, the energy decay curve, the spectrum, and the autocorrelation of the time signal and spectrogram. A visual inspection of the spectrograms as well as a comparison of sound samples proves the approach to be successful for estimating the parameters of reverberators with one, two and three springs. This indicates that the proposed method is a viable alternative to manual calibration of spring reverberator models.
Download Differentiable All-Pass Filters for Phase Response Estimation and Automatic Signal Alignment
Virtual analog (VA) audio effects are increasingly based on neural networks and deep learning frameworks. Due to the underlying black-box methodology, a successful model will learn to approximate the data it is presented, including potential errors such as latency and audio dropouts as well as non-linear characteristics and frequency-dependent phase shifts produced by the hardware. The latter is of particular interest as the learned phase-response might cause unwanted audible artifacts when the effect is used for creative processing techniques such as dry-wet mixing or parallel compression. To overcome these artifacts we propose differentiable signal processing tools and deep optimization structures for automatically tuning all-pass filters to predict the phase response of different VA simulations, and align processed signals that are out of phase. The approaches are assessed using objective metrics while listening tests evaluate their ability to enhance the quality of parallel path processing techniques. Ultimately, an overparameterized, BiasNet-based, all-pass model is proposed for the optimization problem under consideration, resulting in models that can estimate all-pass filter coefficients to align a dry signal with its affected, wet, equivalent.
Download A Combined Model for a Bucket Brigade Device and its Input and Output Filters
Bucket brigade devices (BBDs) were invented in the late 1960s as a method of introducing a time-delay into an analog electrical circuit. They work by sampling the input signal at a certain clock rate and shifting it through a chain of capacitors to obtain the delay. BBD chips have been used to build a large variety of analog effects processing devices, ranging from chorus to flanging to echo effects. They have therefore attracted interest in virtual analog modeling and a number of approaches to modeling them digitally have appeared. In this paper, we propose a new model for the bucket-brigade device. This model is based on a variable samplerate, and utilizes the surrounding filtering circuitry found in real devices to avoid the need for the interpolation usually needed in such a variable sample-rate system.