Download Fade-in Control for Feedback Delay Networks
In virtual acoustics, it is common to simulate the early part of a Room Impulse Response using approaches from geometrical acoustics and the late part using Feedback Delay Networks (FDNs). In order to transition from the early to the late part, it is useful to slowly fade-in the FDN response. We propose two methods to control the fade-in, one based on double decays and the other based on modal beating. We use modal analysis to explain the two concepts for incorporating this fade-in behaviour entirely within the IIR structure of a multiple input multiple output FDN. We present design equations, which allow for placing the fade-in time at an arbitrary point within its derived limit.
Download Dark Velvet Noise
This paper proposes dark velvet noise (DVN) as an extension of the original velvet noise with a lowpass spectrum. The lowpass spectrum is achieved by allowing each pulse in the sparse sequence to have a randomized pulse width. The cutoff frequency is controlled by the density of the sequence. The modulated pulse-width can be implemented efficiently utilizing a discrete set of recursive running-sum filters, one for each unique pulse width. DVN may be used in reverberation algorithms. Typical room reverberation has a frequency-dependent decay, where the high frequencies decay faster than the low ones. A similar effect is achieved by lowering the density and increasing the pulse-width of DVN in time, thereby making the DVN suitable for artificial reverberation.
Download Binaural Dark-Velvet-Noise Reverberator
Binaural late-reverberation modeling necessitates the synthesis of frequency-dependent inter-aural coherence, a crucial aspect of spatial auditory perception. Prior studies have explored methodologies such as filtering and cross-mixing two incoherent late reverberation impulse responses to emulate the coherence observed in measured binaural late reverberation. In this study, we introduce two variants of the binaural dark-velvet-noise reverberator. The first one uses cross-mixing of two incoherent dark-velvet-noise sequences that can be generated efficiently. The second variant is a novel time-domain jitter-based approach. The methods’ accuracies are assessed through objective and subjective evaluations, revealing that both methods yield comparable performance and clear improvements over using incoherent sequences. Moreover, the advantages of the jitter-based approach over cross-mixing are highlighted by introducing a parametric width control, based on the jitter-distribution width, into the binaural dark velvet noise reverberator. The jitter-based approach can also introduce timedependent coherence modifications without additional computational cost.
Download Perceptual Decorrelator Based on Resonators
Decorrelation filters transform mono audio into multiple decorrelated copies. This paper introduces a novel decorrelation filter design based on a resonator bank, which produces a sum of over a thousand exponentially decaying sinusoids. A headphone listening test was used to identify the minimum inter-channel time delays that perceptually match ERB-filtered coherent noise to corresponding incoherent noise. The decay rate of each resonator is set based on a group delay profile determined by the listening test results at its corresponding frequency. Furthermore, the delays from the test are used to refine frequency-dependent windowing in coherence estimation, which we argue represents the perceptually most accurate way of assessing interaural coherence. This coherence measure then guides an optimization process that adjusts the initial phases of the sinusoids to minimize the coherence between two instances of the resonator-based decorrelator. The delay results establish the necessary group delay per ERB for effective decorrelation, revealing higher-than-expected values, particularly at higher frequencies. For comparison, the optimization is also performed using two previously proposed group-delay profiles: one based on the period of the ERB band center frequency and another based on the maximum group-delay limit before introducing smearing. The results indicate that the perceptually informed profile achieves equal decorrelation to the latter profile while smearing less at high frequencies. Overall, optimizing the phase response of the proposed decorrelator yields significantly lower coherence compared to using a random phase.