Download Explicit Vector Wave Digital Filter Modeling of Circuits with a Single Bipolar Junction Transistor
The recently developed extension of Wave Digital Filters based on vector wave variables has broadened the class of circuits with linear two-port elements that can be modeled in a modular and explicit fashion in the Wave Digital (WD) domain. In this paper, we apply the vector definition of wave variables to nonlinear twoport elements. In particular, we present two vector WD models of a Bipolar Junction Transistor (BJT) using characteristic equations derived from an extended Ebers-Moll model. One, implicit, is based on a modified Newton-Raphson method; the other, explicit, is based on a neural network trained in the WD domain and it is shown to allow fully explicit implementation of circuits with a single BJT, which can be executed in real time.
Download Wave Digital Model of the MXR Phase 90 Based on a Time-Varying Resistor Approximation of JFET Elements
Virtual Analog (VA) modeling is the practice of digitally emulating analog audio gear. Over the past few years, with the purpose of recreating the alleged distinctive sound of audio equipment and musicians, many different guitar pedals have been emulated by means of the VA paradigm but little attention has been given to phasers. Phasers process the spectrum of the input signal with time-varying notches by means of shifting stages typically realized with a network of transistors, whose nonlinear equations are, in general, demanding to be solved. In this paper, we take as a reference the famous MXR Phase 90 guitar pedal, and we propose an efficient time-varying model of its Junction Field-Effect Transistors (JFETs) based on a channel resistance approximation. We then employ such a model in the Wave Digital domain to emulate in real-time the guitar pedal, obtaining an implementation characterized by low computational cost and good accuracy.
Download Wave Digital Modeling of Circuits with Multiple One-Port Nonlinearities Based on Lipschitz-Bounded Neural Networks
Neural networks have found application within the Wave Digital Filters (WDFs) framework as data-driven input-output blocks for modeling single one-port or multi-port nonlinear devices in circuit systems. However, traditional neural networks lack predictable bounds for their output derivatives, essential to ensure convergence when simulating circuits with multiple nonlinear elements using fixed-point iterative methods, e.g., the Scattering Iterative Method (SIM). In this study, we address such issue by employing Lipschitz-bounded neural networks for regressing nonlinear WD scattering relations of one-port nonlinearities.
Download Training Neural Models of Nonlinear Multi-Port Elements Within Wave Digital Structures Through Discrete-Time Simulation
Neural networks have been applied within the Wave Digital Filter (WDF) framework as data-driven models for nonlinear multi-port circuit elements. Conventionally, these models are trained on wave variables obtained by sampling the current-voltage characteristic of the considered nonlinear element before being incorporated into the circuit WDF implementation. However, isolating multi-port elements for this process can be challenging, as their nonlinear behavior often depends on dynamic effects that emerge from interactions with the surrounding circuit. In this paper, we propose a novel approach for training neural models of nonlinear multi-port elements directly within a circuit’s Wave Digital (WD) discretetime implementation, relying solely on circuit input-output voltage measurements. Exploiting the differentiability of WD simulations, we embed the neural network into the simulation process and optimize its parameters using gradient-based methods by minimizing a loss function defined over the circuit output voltage. Experimental results demonstrate the effectiveness of the proposed approach in accurately capturing the nonlinear circuit behavior, while preserving the interpretability and modularity of WDFs.