Download Exposure Bias and State Matching in Recurrent Neural Network Virtual Analog Models Virtual analog (VA) modeling using neural networks (NNs) has
great potential for rapidly producing high-fidelity models. Recurrent neural networks (RNNs) are especially appealing for VA due
to their connection with discrete nodal analysis. Furthermore, VA
models based on NNs can be trained efficiently by directly exposing them to the circuit states in a gray-box fashion. However,
exposure to ground truth information during training can leave the
models susceptible to error accumulation in a free-running mode,
also known as “exposure bias” in machine learning literature. This
paper presents a unified framework for treating the previously
proposed state trajectory network (STN) and gated recurrent unit
(GRU) networks as special cases of discrete nodal analysis. We
propose a novel circuit state-matching mechanism for the GRU
and experimentally compare the previously mentioned networks
for their performance in state matching, during training, and in exposure bias, during inference. Experimental results from modeling
a diode clipper show that all the tested models exhibit some exposure bias, which can be mitigated by truncated backpropagation
through time. Furthermore, the proposed state matching mechanism improves the GRU modeling performance of an overdrive
pedal and a phaser pedal, especially in the presence of external
modulation, apparent in a phaser circuit.
Download DDSP-Based Neural Waveform Synthesis of Polyphonic Guitar Performance From String-Wise MIDI Input We explore the use of neural synthesis for acoustic guitar from string-wise MIDI input. We propose four different systems and compare them with both objective metrics and subjective evaluation against natural audio and a sample-based baseline. We iteratively develop these four systems by making various considerations on the architecture and intermediate tasks, such as predicting pitch and loudness control features. We find that formulating the control feature prediction task as a classification task rather than a regression task yields better results. Furthermore, we find that our simplest proposed system, which directly predicts synthesis parameters from MIDI input performs the best out of the four proposed systems. Audio examples and code are available.
Download Solid State Bus-Comp: A Large-Scale and Diverse Dataset for Dynamic Range Compressor Virtual Analog Modeling Virtual Analog (VA) modeling aims to simulate the behavior
of hardware circuits via algorithms to replicate their tone digitally.
Dynamic Range Compressor (DRC) is an audio processing module
that controls the dynamics of a track by reducing and amplifying
the volumes of loud and quiet sounds, which is essential in music
production. In recent years, neural-network-based VA modeling has
shown great potential in producing high-fidelity models. However,
due to the lack of data quantity and diversity, their generalization
ability in different parameter settings and input sounds is still limited. To tackle this problem, we present Solid State Bus-Comp, the
first large-scale and diverse dataset for modeling the classical VCA
compressor — SSL 500 G-Bus. Specifically, we manually collected
175 unmastered songs from the Cambridge Multitrack Library. We
recorded the compressed audio in 220 parameter combinations,
resulting in an extensive 2528-hour dataset with diverse genres, instruments, tempos, and keys. Moreover, to facilitate the use of our
proposed dataset, we conducted benchmark experiments in various
open-sourced black-box and grey-box models, as well as white-box
plugins. We also conducted ablation studies in different data subsets to illustrate the effectiveness of the improved data diversity and
quantity. The dataset and demos are on our project page: https:
//www.yichenggu.com/SolidStateBusComp/.
Download Unsupervised Estimation of Nonlinear Audio Effects: Comparing Diffusion-Based and Adversarial Approaches Accurately estimating nonlinear audio effects without access to
paired input-output signals remains a challenging problem. This
work studies unsupervised probabilistic approaches for solving this
task. We introduce a method, novel for this application, based
on diffusion generative models for blind system identification, enabling the estimation of unknown nonlinear effects using blackand gray-box models. This study compares this method with a
previously proposed adversarial approach, analyzing the performance of both methods under different parameterizations of the
effect operator and varying lengths of available effected recordings. Through experiments on guitar distortion effects, we show
that the diffusion-based approach provides more stable results and
is less sensitive to data availability, while the adversarial approach
is superior at estimating more pronounced distortion effects. Our
findings contribute to the robust unsupervised blind estimation of
audio effects, demonstrating the potential of diffusion models for
system identification in music technology.