Download Arbitrary-Order IIR Antiderivative Antialiasing
Nonlinear digital circuits and waveshaping are active areas of study, specifically for what concerns numerical and aliasing issues. In the past, an effective method was proposed to discretize nonlinear static functions with reduced aliasing based on the antiderivative of the nonlinear function. Such a method is based on the continuoustime convolution with an FIR antialiasing filter kernel, such as a rectangular kernel. These kernels, however, are far from optimal for the reduction of aliasing. In this paper we introduce the use of arbitrary IIR rational transfer functions that allow a closer approximation of the ideal antialiasing filter, required in the fictitious continuous-time domain before sampling the nonlinear function output. These allow a higher degree of aliasing reduction and can be flexibly adjusted to balance performance and computational cost.
Download Spatializing Screen Readers: Extending VoiceOver via Head-Tracked Binaural Synthesis for User Interface Accessibility
Traditional screen-based graphical user interfaces (GUIs) pose significant accessibility challenges for visually impaired users. This paper demonstrates how existing GUI elements can be translated into an interactive auditory domain using high-order Ambisonics and inertial sensor-based head tracking, culminating in a realtime binaural rendering over headphones. The proposed system is designed to spatialize the auditory output from VoiceOver, the built-in macOS screen reader, aiming to foster clearer mental mapping and enhanced navigability. A between-groups experiment was conducted to compare standard VoiceOver with the proposed spatialized version. Non visually-impaired participants (n = 32), with no visual access to the test interface, completed a list-based exploration and then attempted to reconstruct the UI solely from auditory cues. Experimental results indicate that the head-tracked group achieved a slightly higher accuracy in reconstructing the interface, while user experience assessments showed no significant differences in self-reported workload or usability. These findings suggest that potential benefits may come from the integration of head-tracked binaural audio into mainstream screen-reader workflows, but future investigations involving blind and low-vision users are needed. Although the experimental testbed uses a generic desktop app, our ultimate goal is to tackle the complex visual layouts of music-production software, where an head-tracked audio approach could benefit visually impaired producers and musicians navigating plug-in controls.
Download Equalizing Loudspeakers in Reverberant Environments Using Deep Convolutive Dereverberation
Loudspeaker equalization is an established topic in the literature, and currently many techniques are available to address most practical use cases. However, most of these rely on accurate measurements of the loudspeaker in an anechoic environment, which in some occurrences is not feasible. This is the case, e.g. of custom digital organs, which have a set of loudspeakers that are built into a large and geometrically-complex piece of furniture, which may be too heavy and large to be transported to a measurement room, or may require a big one, making traditional impulse response measurements impractical for most users. In this work we propose a method to find the inverse of the sound emission system in a reverberant environment, based on a Deep Learning dereverberation algorithm. The method is agnostic of the room characteristics and can be, thus, conducted in an automated fashion in any environment. A real use case is discussed and results are provided, showing the effectiveness of the approach in designing filters that match closely the magnitude response of the ideal inverting filters.
Download Simplifying Antiderivative Antialiasing with Lookup Table Integration
Antiderivative Antialiasing (ADAA), has become a pivotal method for reducing aliasing when dealing with nonlinear function at audio rate. However, its implementation requires analytical computation of the antiderivative of the nonlinear function, which in practical cases can be challenging without a symbolic solver. Moreover, when the nonlinear function is given by measurements it must be approximated to get a symbolic description. In this paper, we propose a simple approach to ADAA for practical applications that employs numerical integration of lookup tables (LUTs) to approximate the antiderivative. This method eliminates the need for closed-form solutions, streamlining the ADAA implementation process in industrial applications. We analyze the trade-offs of this approach, highlighting its computational efficiency and ease of implementation while discussing the potential impact of numerical integration errors on aliasing performance. Experiments are conducted with static nonlinearities (tanh, a simple wavefolder and the Buchla 259 wavefolding circuit) and a stateful nonlinear system (the diode clipper).