Download A Physically-Constrained Source Model for FDTD Acoustic Simulation The Finite Difference Time Domain (FDTD) method is becoming increasingly popular for room acoustics simulation. Yet, the literature on grid excitation methods is relatively sparse, and source functions are traditionally implemented in a hard or additive form using arbitrarily-shaped functions which do not necessarily obey the physical laws of sound generation. In this paper we formulate a source function based on a small pulsating sphere model. A physically plausible method to inject a source signal into the grid is derived from first principles, resulting in a source with a nearflat spectrum that does not scatter incoming waves. In the final discrete-time formulation, the source signal is the result of passing a Gaussian pulse through a digital filter simulating the dynamics of the pulsating sphere, hence facilitating a physically correct means to design source functions that generate a prescribed sound field.
Download Perception & Evaluation of Audio Quality in Music Production A dataset of audio clips was prepared and audio quality assessed by subjective testing. Encoded as digital signals, a large amount of feature-extraction was possible. A new objective metric is proposed, describing the Gaussian nature of a signal’s amplitude distribution. Correlations between objective measurements of the music signals and the subjective perception of their quality were found. Existing metrics were adjusted to match quality perception. A number of timbral, spatial, rhythmic and amplitude measures, in addition to predictions of emotional response, were found to be related to the perception of quality. The emotional features were found to have most importance, indicating a connection between quality and a unified set of subjective and objective parameters.
Download Categorisation of Distortion Profiles in Relation to Audio Quality Since digital audio is encoded as discrete samples of the audio waveform, much can be said about a recording by the statistical properties of these samples. In this paper, a dataset of CD audio samples is analysed; the probability mass function of each audio clip informs a feature set which describes attributes of the musical recording related to loudness, dynamics and distortion. This allows musical recordings to be classified according to their “distortion character”, a concept which describes the nature of amplitude distortion in mastered audio. A subjective test was designed in which such recordings were rated according to the perception of their audio quality. It is shown that participants can discern between three different distortion characters; ratings of audio quality were significantly different (F (1, 2) = 5.72, p < 0.001, η 2 = 0.008) as were the words used to describe the attributes on which quality was assessed (χ2 (8, N = 547) = 33.28, p < 0.001). This expands upon previous work showing links between the effects of dynamic range compression and audio quality in musical recordings, by highlighting perceptual differences.
Download Evaluating the Performance of Objective Audio Quality Metrics in Response to Common Audio Degradations This study evaluates the performance of five objective audio quality metrics—PEAQ Basic, PEAQ Advanced, PEMO-Q, ViSQOL,
and HAAQI —in the context of digital music production. Unlike
previous comparisons, we focus on their suitability for production environments, an area currently underexplored in existing research. Twelve audio examples were tested using two evaluation
types: an effectiveness test under progressively increasing degradations (hum, hiss, clipping, glitches) and a robustness test under
fixed-level, randomly fluctuating degradations.
In the effectiveness test, HAAQI, PEMO-Q, and PEAQ Basic
effectively tracked degradation changes, while PEAQ Advanced
failed consistently and ViSQOL showed low sensitivity to hum
and glitches. In the robustness test, ViSQOL and HAAQI demonstrated the highest consistency, with average standard deviations
of 0.004 and 0.007, respectively, followed by PEMO-Q (0.021),
PEAQ Basic (0.057), and PEAQ Advanced (0.065).
However,
ViSQOL also showed low variability across audio examples, suggesting limited genre sensitivity.
These findings highlight the strengths and limitations of each
metric for music production, specifically quality measurement with
compressed audio. The source code and dataset will be made publicly available upon publication.
Download Auditory Discrimination of Early Reflections in Virtual Rooms This study investigates the perceptual sensitivity to early reflection changes across different spatial directions in a virtual
reality (VR) environment. Using an ABX discrimination paradigm, participants evaluated speech stimuli convolved with thirdorder Ambisonic room impulse responses under three position
reversal (Left–Right, Front–Back, and Floor–Ceiling) and three
reverberation conditions (RT60 = 1.0 s, 0.6 s, and 0.2 s). Binomial tests revealed that participants consistently detected early reflection differences in the Left–Right reversal, while discrimination performance in the other two directions remained at or near
chance. This result can be explained by the higher acuity and
lower localisation blur found for the human auditory system. A
two-way ANOVA confirmed a significant main effect of spatial
position (p = 0.00685, η² = 0.1605), with no significant effect of
reverberation or interaction. The analysis of the binaural room
impulse responses showed wave forms and Direct-ReverberantRatio differences in the Left–Right reversal position, aligning
with perceptual results. However, no definitive causal link between DRR variations and perceptual outcomes can yet be established.