Download One-to-Many Conversion for Percussive Samples
A filtering algorithm for generating subtle random variations in sampled sounds is proposed. Using only one recording for impact sound effects or drum machine sounds results in unrealistic repetitiveness during consecutive playback. This paper studies spectral variations in repeated knocking sounds and in three drum sounds: a hihat, a snare, and a tomtom. The proposed method uses a short pseudo-random velvet-noise filter and a low-shelf filter to produce timbral variations targeted at appropriate spectral regions, yielding potentially an endless number of new realistic versions of a single percussive sampled sound. The realism of the resulting processed sounds is studied in a listening test. The results show that the sound quality obtained with the proposed algorithm is at least as good as that of a previous method while using 77% fewer computational operations. The algorithm is widely applicable to computer-generated music and game audio.
Download Perceptual Decorrelator Based on Resonators
Decorrelation filters transform mono audio into multiple decorrelated copies. This paper introduces a novel decorrelation filter design based on a resonator bank, which produces a sum of over a thousand exponentially decaying sinusoids. A headphone listening test was used to identify the minimum inter-channel time delays that perceptually match ERB-filtered coherent noise to corresponding incoherent noise. The decay rate of each resonator is set based on a group delay profile determined by the listening test results at its corresponding frequency. Furthermore, the delays from the test are used to refine frequency-dependent windowing in coherence estimation, which we argue represents the perceptually most accurate way of assessing interaural coherence. This coherence measure then guides an optimization process that adjusts the initial phases of the sinusoids to minimize the coherence between two instances of the resonator-based decorrelator. The delay results establish the necessary group delay per ERB for effective decorrelation, revealing higher-than-expected values, particularly at higher frequencies. For comparison, the optimization is also performed using two previously proposed group-delay profiles: one based on the period of the ERB band center frequency and another based on the maximum group-delay limit before introducing smearing. The results indicate that the perceptually informed profile achieves equal decorrelation to the latter profile while smearing less at high frequencies. Overall, optimizing the phase response of the proposed decorrelator yields significantly lower coherence compared to using a random phase.