Download Antialiased Black-Box Modeling of Audio Distortion Circuits Using Real Linear Recurrent Units
In this paper, we propose the use of real-valued Linear Recurrent Units (LRUs) for black-box modeling of audio circuits. A network architecture composed of real LRU blocks interleaved with nonlinear processing stages is proposed. Two case studies are presented, a second-order diode clipper and an overdrive distortion pedal. Furthermore, we show how to integrate the antiderivative antialiaisng technique into the proposed method, effectively lowering oversampling requirements. Our experiments show that the proposed method generates models that accurately capture the nonlinear dynamics of the examined devices and are highly efficient, which makes them suitable for real-time operation inside Digital Audio Workstations.
Download Virtual Analog Buchla 259 Wavefolder
An antialiased digital model of the wavefolding circuit inside the Buchla 259 Complex Waveform Generator is presented. Wavefolding is a type of nonlinear waveshaping used to generate complex harmonically-rich sounds from simple periodic waveforms. Unlike other analog wavefolder designs, Buchla’s design features five op-amp-based folding stages arranged in parallel alongside a direct signal path. The nonlinear behavior of the system is accurately modeled in the digital domain using memoryless mappings of the input–output voltage relationships inside the circuit. We pay special attention to suppressing the aliasing introduced by the nonlinear frequency-expanding behavior of the wavefolder. For this, we propose using the bandlimited ramp (BLAMP) method with eight times oversampling. Results obtained are validated against SPICE simulations and a highly oversampled digital model. The proposed virtual analog wavefolder retains the salient features of the original circuit and is applicable to digital sound synthesis.