Download RAVE for Speech: Efficient Voice Conversion at High Sampling Rates
Voice conversion has gained increasing popularity within the field of audio manipulation and speech synthesis. Often, the main objective is to transfer the input identity to that of a target speaker without changing its linguistic content. While current work provides high-fidelity solutions they rarely focus on model simplicity, high-sampling rate environments or stream-ability. By incorporating speech representation learning into a generative timbre transfer model, traditionally created for musical purposes, we investigate the realm of voice conversion generated directly in the time domain at high sampling rates. More specifically, we guide the latent space of a baseline model towards linguistically relevant representations and condition it on external speaker information. Through objective and subjective assessments, we demonstrate that the proposed solution can attain levels of naturalness, quality, and intelligibility comparable to those of a state-of-the-art solution for seen speakers, while significantly decreasing inference time. However, despite the presence of target speaker characteristics in the converted output, the actual similarity to unseen speakers remains a challenge.
Download Differentiable All-Pass Filters for Phase Response Estimation and Automatic Signal Alignment
Virtual analog (VA) audio effects are increasingly based on neural networks and deep learning frameworks. Due to the underlying black-box methodology, a successful model will learn to approximate the data it is presented, including potential errors such as latency and audio dropouts as well as non-linear characteristics and frequency-dependent phase shifts produced by the hardware. The latter is of particular interest as the learned phase-response might cause unwanted audible artifacts when the effect is used for creative processing techniques such as dry-wet mixing or parallel compression. To overcome these artifacts we propose differentiable signal processing tools and deep optimization structures for automatically tuning all-pass filters to predict the phase response of different VA simulations, and align processed signals that are out of phase. The approaches are assessed using objective metrics while listening tests evaluate their ability to enhance the quality of parallel path processing techniques. Ultimately, an overparameterized, BiasNet-based, all-pass model is proposed for the optimization problem under consideration, resulting in models that can estimate all-pass filter coefficients to align a dry signal with its affected, wet, equivalent.
Download Inferring the hand configuration from hand clapping sounds
In this paper, a technique for inferring the configuration of a clapper’s hands from a hand clapping sound is described. The method was developed based on analysis of synthetic and recorded hand clap sounds, labeled with the corresponding hand configurations. A naïve Bayes classifier was constructed to automatically classify the data using two different feature sets. The results indicate that the approach is applicable for inferring the hand configuration.