Download Network Bending of Diffusion Models for Audio-Visual Generation
In this paper we present the first steps towards the creation of a tool which enables artists to create music visualizations using pretrained, generative, machine learning models. First, we investigate the application of network bending, the process of applying transforms within the layers of a generative network, to image generation diffusion models by utilizing a range of point-wise, tensorwise, and morphological operators. We identify a number of visual effects that result from various operators, including some that are not easily recreated with standard image editing tools. We find that this process allows for continuous, fine-grain control of image generation which can be helpful for creative applications. Next, we generate music-reactive videos using Stable Diffusion by passing audio features as parameters to network bending operators. Finally, we comment on certain transforms which radically shift the image and the possibilities of learning more about the latent space of Stable Diffusion based on these transforms.
Download Unsupervised Text-to-Sound Mapping via Embedding Space Alignment
This work focuses on developing an artistic tool that performs an unsupervised mapping between text and sound, converting an input text string into a series of sounds from a given sound corpus. With the use of a pre-trained sound embedding model and a separate, pre-trained text embedding model, the goal is to find a mapping between the two feature spaces. Our approach is unsupervised which allows any sound corpus to be used with the system. The tool performs the task of text-to-sound retrieval, creating a soundfile in which each word in the text input is mapped to a single sound in the corpus, and the resulting sounds are concatenated to play sequentially. We experiment with three different mapping methods, and perform quantitative and qualitative evaluations on the outputs. Our results demonstrate the potential of unsupervised methods for creative applications in text-to-sound mapping.