Download Non-Iterative Schemes for the Simulation of Nonlinear Audio Circuits In this work, a number of numerical schemes are presented in the
context of virtual-analog simulation. The schemes are linearlyimplicit in character, and hence directly solvable without iterative
methods. Schemes of increasing order of accuracy are constructed,
and convergence and stability conditions are proven formally. The
schemes are able to handle stiff problems very efficiently, because
of their fast update, and can be run at higher sample rates to reduce
aliasing. The cases of the diode clipper and ring modulator are
investigated in detail, including several numerical examples.
Download Applications of Port Hamiltonian Methods to Non-Iterative Stable Simulations of the Korg35 and Moog 4-Pole Vcf This paper presents an application of the port Hamiltonian formalism to the nonlinear simulation of the OTA-based Korg35 filter circuit and the Moog 4-pole ladder filter circuit. Lyapunov analysis is
used with their state-space representations to guarantee zero-input
stability over the range of parameters consistent with the actual
circuits. A zero-input stable non-iterative discrete-time scheme
based on a discrete gradient and a change of state variables is
shown along with numerical simulations. Simulations show behavior consistent with the actual operation of the circuits, e.g.,
self-oscillation, and are found to be stable and have lower computational cost compared to iterative methods.