Download Characterisation of Acoustic Scenes Using a Temporally-constrained Shift-invariant Model In this paper, we propose a method for modeling and classifying acoustic scenes using temporally-constrained shift-invariant probabilistic latent component analysis (SIPLCA). SIPLCA can be used for extracting time-frequency patches from spectrograms in an unsupervised manner. Component-wise hidden Markov models are incorporated to the SIPLCA formulation for enforcing temporal constraints on the activation of each acoustic component. The time-frequency patches are converted to cepstral coefficients in order to provide a compact representation of acoustic events within a scene. Experiments are made using a corpus of train station recordings, classified into 6 scene classes. Results show that the proposed model is able to model salient events within a scene and outperforms the non-negative matrix factorization algorithm for the same task. In addition, it is demonstrated that the use of temporal constraints can lead to improved performance.
Download Digitally Moving An Electric Guitar Pickup This paper describes a technique to transform the sound of an arbitrarily selected magnetic pickup into another pickup selection on the same electric guitar. This is a first step towards replicating an arbitrary electric guitar timbre in an audio recording using the signal from another guitar as input. We record 1458 individual notes from the pickups of a single guitar, varying the string, fret, plucking position, and dynamics of the tones in order to create a controlled dataset for training and testing our approach. Given an input signal and a target signal, a least squares estimator is used to obtain the coefficients of a finite impulse response (FIR) filter to match the desired magnetic pickup position. We use spectral difference to measure the error of the emulation, and test the effects of independent variables fret, dynamics, plucking position and repetition on the accuracy. A small reduction in accuracy was observed for different repetitions; moderate errors arose when the playing style (plucking position and dynamics) were varied; and there were large differences between output and target when the training and test data comprised different notes (fret positions). We explain results in terms of the acoustics of the vibrating strings.