Download Re-Thinking Sound Separation: Prior Information and Additivity Constraint in Separation Algorithms
In this paper, we study the effect of prior information on the quality of informed source separation algorithms. We present results with our system for solo and accompaniment separation and contrast our findings with two other state-of-the art approaches. Results suggest current separation techniques limit performance when compared to extraction process of prior information. Furthermore, we present an alternative view of the separation process where the additivity constraint of the algorithm is removed in the attempt to maximize obtained quality. Plausible future directions in sound separation research are discussed.
Download Real-Time Transcription and Separation of Drum Recordings Based on NMF Decompositon
This paper proposes a real-time capable method for transcribing and separating occurrences of single drum instruments in polyphonic drum recordings. Both the detection and the decomposition are based on Non-Negative Matrix Factorization and can be implemented with very small systemic delay. We propose a simple modification to the update rules that allows to capture timedynamic spectral characteristics of the involved drum sounds. The method can be applied in music production and music education software. Performance results with respect to drum transcription are presented and discussed. The evaluation data-set consisting of annotated drum recordings is published for use in further studies in the field. Index Terms - drum transcription, source separation, nonnegative matrix factorization, spectral processing, audio plug-in, music production, music education
Download Effective Singing Voice Detection in Popular Music Using ARMA Filtering
Locating singing voice segments is essential for convenient indexing, browsing and retrieval large music archives and catalogues. Furthermore, it is beneficial for automatic music transcription and annotations. The approach described in this paper uses Mel-Frequency Cepstral Coefficients in conjunction with Gaussian Mixture Models for discriminating two classes of data (instrumental music and singing voice with music background). Due to imperfect classification behavior, the categorization without additional post-processing tends to alternate within a very short time span, whereas singing voice tends to be continuous for several frames. Thus, various tests have been performed to identify a suitable decision function and corresponding smoothing methods. Results are reported by comparing the performance of straightforward likelihood based classifications vs. postprocessing with an autoregressive moving average filtering method.
Download NMF Toolbox: Music Processing Applications of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a family of methods widely used for information retrieval across domains including text, images, and audio. Within music processing, NMF has been used for tasks such as transcription, source separation, and structure analysis. Prior work has shown that initialization and constrained update rules can drastically improve the chances of NMF converging to a musically meaningful solution. Along these lines we present the NMF toolbox, containing MATLAB and Python implementations of conceptually distinct NMF variants—in particular, this paper gives an overview for two algorithms. The first variant, called nonnegative matrix factor deconvolution (NMFD), extends the original NMF algorithm to the convolutive case, enforcing the temporal order of spectral templates. The second variant, called diagonal NMF, supports the development of sparse diagonal structures in the activation matrix. Our toolbox contains several demo applications and code examples to illustrate its potential and functionality. By providing MATLAB and Python code on a documentation website under a GNU-GPL license, as well as including illustrative examples, our aim is to foster research and education in the field of music processing.