Download Real-Time Transcription and Separation of Drum Recordings Based on NMF Decompositon This paper proposes a real-time capable method for transcribing and separating occurrences of single drum instruments in polyphonic drum recordings. Both the detection and the decomposition are based on Non-Negative Matrix Factorization and can be implemented with very small systemic delay. We propose a simple modification to the update rules that allows to capture timedynamic spectral characteristics of the involved drum sounds. The method can be applied in music production and music education software. Performance results with respect to drum transcription are presented and discussed. The evaluation data-set consisting of annotated drum recordings is published for use in further studies in the field. Index Terms - drum transcription, source separation, nonnegative matrix factorization, spectral processing, audio plug-in, music production, music education
Download Automatic Tablature Transcription of Electric Guitar Recordings by Estimation of Score- and Instrument-Related Parameters In this paper we present a novel algorithm for automatic analysis, transcription, and parameter extraction from isolated polyphonic guitar recordings. In addition to general score-related information such as note onset, duration, and pitch, instrumentspecific information such as the plucked string, the applied plucking and expression styles are retrieved automatically. For this purpose, we adapted several state-of-the-art approaches for onset and offset detection, multipitch estimation, string estimation, feature extraction, and multi-class classification. Furthermore we investigated a robust partial tracking algorithm with respect to inharmonicity, an extensive extraction of novel and known audio features as well as the exploitation of instrument-based knowledge in the form of plausability filtering to obtain more reliable prediction. Our system achieved very high accuracy values of 98 % for onset and offset detection as well as multipitch estimation. For the instrument-related parameters, the proposed algorithm also showed very good performance with accuracy values of 82 % for the string number, 93 % for the plucking style, and 83 % for the expression style. Index Terms - playing techniques, plucking style, expression style, multiple fundamental frequency estimation, string classification, fretboard position, fingering, electric guitar, inharmonicity coefficient, tablature
Download Towards Transient Restoration in Score-informed Audio Decomposition Our goal is to improve the perceptual quality of transient signal components extracted in the context of music source separation. Many state-of-the-art techniques are based on applying a suitable decomposition to the magnitude of the Short-Time Fourier Transform (STFT) of the mixture signal. The phase information required for the reconstruction of individual component signals is usually taken from the mixture, resulting in a complex-valued, modified STFT (MSTFT). There are different methods for reconstructing a time-domain signal whose STFT approximates the target MSTFT. Due to phase inconsistencies, these reconstructed signals are likely to contain artifacts such as pre-echos preceding transient components. In this paper, we propose a simple, yet effective extension of the iterative signal reconstruction procedure by Griffin and Lim to remedy this problem. In a first experiment, under laboratory conditions, we show that our method considerably attenuates pre-echos while still showing similar convergence properties as the original approach. A second, more realistic experiment involving score-informed audio decomposition shows that the proposed method still yields improvements, although to a lesser extent, under non-idealized conditions.