Download A Quadric Surface Model of Vacuum Tubes for Virtual Analog Applications
Despite the prevalence of modern audio technology, vacuum tube amplifiers continue to play a vital role in the music industry. For this reason, over the years, many different digital techniques have been introduced for accomplishing their emulation. In this paper, we propose a novel quadric surface model for tube simulations able to overcome the Cardarilli model in terms of efficiency whilst retaining comparable accuracy when grid current is negligible. After showing the model capability to well outline tubes starting from measurement data, we perform an efficiency comparison by implementing the considered tube models as nonlinear 3-port elements in the Wave Digital domain. We do this by taking into account the typical common-cathode gain stage employed in vacuum tube guitar amplifiers. The proposed model turns out to be characterized by a speedup of 4.6× with respect to the Cardarilli model, proving thus to be promising for real-time Virtual Analog applications.
Download Analysis and Emulation of Early Digitally-Controlled Oscillators Based on the Walsh-Hadamard Transform
Early analog synthesizer designs are very popular nowadays, and the discrete-time emulation of voltage-controlled oscillator (VCO) circuits is covered by a large number of virtual analog (VA) textbooks, papers and tutorials. One of the issues of well-known VCOs is their tuning instability and sensitivity to environmental conditions. For this reason, digitally-controlled oscillators were later introduced to provide stable tuning. Up to now, such designs have gained much less attention in the music processing literature. In this paper, we examine one of such designs, which is based on the Walsh-Hadamard transform. The concept was employed in the ARP Pro Soloist and in the Welson Syntex, among others. Some historical background is provided, along with a discussion on the principle, the actual implementation and a band-limited virtual analog derivation.